1,652,246 research outputs found

    The Effect of UNH Undergraduate Student Exercise on Academic Achievement

    Get PDF
    A number of existing studies focus on the effect exercise and dietary habits have on social relationships; however, few studies examine the relationship between exercise and academic performance on college students. In this study, surveys were administered to 202 students at the University of New Hampshire. Although the data presented no statistically significant findings to prove a correlation between exercise and academic performance, students who never exercised were shown to be more likely to do poorly rather than excel academically. Future research should consist of a larger sample using a random sampling method for better reliability and validity in determining a relationship between student exercise and academic performance

    Wearing colored glasses can influence the exercise performance and testosterone concentration

    Get PDF
    Perception of red color is associated with higher testosterone concentration and better human performance. Thus, we evaluated the acute effects of wearing colored-lens glasses on the YoYo intermittent endurance exercise test 2 (YoYoIE2) performance indicators and testosterone concentration. Ten soccer players performed three YoYoIE2 (counterbalanced crossover) wearing colorless (control), blue- or red-lensed glasses (2–4 days of rest in between). YoYoIE2 performance did not differ among the trials (p>0.05), but blood testosterone increased post-exercise in red compared to red baseline (red=14%, effect size=0.75). Analysis showed faster heart rate recovery (p0.05) among the trials. Wearing red-colored lenses during high-intensity intermittent exercise increased testosterone concentration, but do not influence performance

    Effect of inspiratory pressure support on exercise performance in patients with chronic obstructive pulmonary disease

    Get PDF
    Title: Effect of inspiratory pressure support on exercise performance in patients with chronic obstructive pulmonary disease. Purpose: This study examined the effects of a non-invasive ventilator on submaximal and maximal exercise performance in patients with chronic obstructive pulmonary disease (COPD). Methods: Fourteen men (66.0 ± 7.4yr) and six women (59.0 ± 7.4yr) with a diagnosis of COPD, a forced expiratory volume! (FEVi) <40%, and the ability to tolerate 12 cmH20 of pressure on a non- invasive ventilator performed two maximal exercise tests on a cycle ergometer, with and without ventilatory assistance prior to exercise. Blood samples, respiratory metabolic measures, heart rate and rating of perceived exertion (RPE) were obtained throughout each exercise test. Results: Peak work rate (W), total exercise time, and respiratory rate were higher (p<0.05) when exercise was preceded by ventilatory support compared to no support. There was no difference in peak oxygen uptake (V02), carbon dioxide (VC02,), heart rate (HR), minute ventilation (VE), tidal volume (VT), blood lactate or RPE between the two experimental conditions. A total of 12 subjects completed at least 5 stages of the exercise protocol, and their physiological response during exercise with NIV and without NIV were compared. RPE was significantly lower during the first 3 min in the NIV condition than the no NIV condition. Circulating levels of blood lactate were lower (p<0.01) during stage 3 in the NIV than the than no NIV condition. There was no difference in RR, VT, HR, %HR, VE, V 0 2and %V02 between the two experimental conditions during sub maximal exercise. Conclusions: Application of non-invasive ventilatory support prior to exercise improves maximal exercise performance, but has no effect on cardio-metabolic response during submaximal exercise in patients with COPD

    Exercise-induced respiratory muscle work: Effects on blood flow, fatigue and performance

    Get PDF
    This is the post print version of this article. The official published version can be obtained from the link below.In healthy subjects, heavy intensity endurance exercise places substantial demands on the respiratory muscles as breathing frequency, ventilation and the work of breathing rise over time. In the highly trained subject working at high absolute work rates, the ventilatory demand often causes varying degrees of expiratory flow limitation, sometimes accompanied by lung hyperinflation and, therefore, increased elastic work of breathing. Time-dependant increases in effort perceptions for both dyspnea and limb discomfort accompany these increased ventilatory demands. Similar responses to endurance exercise but at much lower exercise intensities also occur in patients with COPD and CHF. Note that these responses significantly influence exercise performance times in both health and disease. This effect was demonstrated by the marked reductions in the rate of rise of effort perceptions and the enhanced exercise performance times elicited by unloading the respiratory muscles using pressure support ventilation or proportional assist mechanical ventilation. In healthy fit subjects, unloading the inspiratory work of breathing by about one half increased performance by an average of 14% (Harms et al. 2000), and in CHF and COPD patients performance time more than doubled with respiratory muscle unloading (O’Donnell et al. 2001). Why are effort perceptions of limb discomfort markedly reduced and exercise performance increased when the respiratory muscles are unloaded? Our hypothesis is shown in Fig. 1

    Repeated exercise stress impairs volitional but not magnetically evoked electromechanical delay of the knee flexors

    Get PDF
    The effects of serial episodes of fatigue and recovery on volitional and magnetically evoked neuromuscular performance of the knee flexors were assessed in twenty female soccer players during: (i) an intervention comprising 4x35s maximal static exercise; (ii) a control condition. Volitional peak force (PFV) was impaired progressively (-16 % vs. baseline: 235.3±54.7 to 198.1±38.5 N) by the fatiguing exercise and recovered to within -97 % of baseline values following six-minutes of rest. Evoked peak twitch force (PTFE) was diminished subsequent to the fourth episode of exercise (23.3 %: 21.4±13.8 vs. 16.4±14.6 N) and remained impaired at this level throughout the recovery. Impairment of volitional electromechanical delay performance (EMDV) following the first episode of exercise (25.5 % :55.3±11.9 vs. 69.5±24.5 ms) contrasted with concurrent improvement (10.0 %: 24.5±4.7 vs. 22.1±5.0 ms) in evoked electromechanical delay (EMDE) (p <0.05) and this increased disparity between EMDE and EMDV remained during subsequent periods of intervention and recovery. The fatiguing exercise provoked substantial impairments to volitional strength and EMDV that showed differential patterns of recovery. However, improved EMDE performance might identify a dormant capability for optimal muscle responses during acute stressful exercise and an improved capacity to maintain dynamic joint stabilty during critical episodes of loading

    Optimizing Cycle Exercise Performance During Normobaric Hypoxia Exposure

    Full text link
    Introduction: The purpose of the present study was to examine whether implementing factors of OPTIMAL Theory: Enhanced Expectancies (EE), Autonomy Support (AS), and External Focus (EF) during a cycle exercise bout at a simulated altitude of 21,000 feet elevation had an effect on exercise performance and EPOC response in comparison to a control condition. Methods: Sixteen participants (n = 8 women, n = 8 men) completed resting oxygen measurements (resting metabolic rate) between 6:00 A.M. and 8:00 A.M. Cycle exercise to fatigue at a constant workload was performed (100 W) while breathing air with reduced oxygen content to simulate exercising at altitude (9.4% fraction of oxygen, equivalent of 6401 m above sea level). All participants performed under two conditions, an optimized and a control condition. The order of conditions were counterbalanced. Following cycle to fatigue protocol, participants were reconnected to the metabolic analysis system and instructed to sit quietly until they returned to their baseline oxygen values (EPOC duration). EPOC magnitude was determined by adding up the net oxygen consumption for every minute during the EPOC duration. Data analysis consisted of paired t-tests. Results: In summary, the results of this study reveal that cycle exercise performance between both conditions was significant, p = .03. Performance outcome measures included duration of cycle exercise to fatigue and mean watts (W). Participants were able to cycle longer in the optimized condition relative to the control, with exercise carried out at the same absolute workload. EPOC duration and magnitude in participants (N = 16) who performed cycling exercise at 100 W under simulated altitude of 6401 m (21,001 ft) to fatigue, resulted in no statistically significant difference between the following optimized and control conditions. Therefore, despite longer cycle exercise duration in the optimized condition, EPOC duration and magnitude in both conditions was not significantly different. Discussion: The present findings adds to evidence that key variables in the OPTIMAL theory influence energy expenditure, enhance movement efficiency, and reduce oxygen consumption. To the best of our knowledge, this is the first study to investigate aerobic exercise performance and EPOC response where all three variables in OPTIMAL theory are applied consecutively during exercise. Thus, further investigation is necessary to examine the physiological parameters of other exercise intensities to asses if similar results are produced

    The effectiveness of orally applied L-menthol on exercise performance in the heat

    Get PDF
    During exercise in the heat, increasing thermal load leads to thermo-behavioural adjustments in exercise performance, due to greater perceptual and physiological strain. Behavioural reductions in exercise intensity in the heat are initially mediated via rises in skin temperature, which alter thermal perception (comfort and sensation) and later by rises in core temperature, which increase cardiovascular strain and perceived exertion. Therefore, thermoregulation may be ordered and dependant on the magnitude, timing and/or prioritisation of afferent signals. Non-thermal cooling via L-menthol has been shown to enhance exercise performance in the early and latter stages when delivered orally at a concentration of 0.01%. Indeed, during periods of progressive thermal stress, imposed by the combination of maximal exercise and environmental heat and humidity, L-menthol has been shown to offer an immediate cooling stimulus thus extending exercise capacity. However, repeated administration of L-menthol during exercise in the heat, as thermal load increases, is unable to recover a decline in work rate. Therefore, it is unclear whether the potency of L-menthol is sustained upon frequent application and what strategies are needed in both sporting and occupational settings to optimise its effectiveness. In this part of the symposium we will consider oral delivery of L-menthol and its potential for reducing an individual’s perception of heat stress with associated effects on exercise tolerance in the heat. We will also examine the frequency of use, optimal concentration, timing and novelty of L-menthol in a sporting and occupational context

    Knee joint neuromuscular activation performance during muscle damage and superimposed fatigue

    Get PDF
    This study examined the concurrent effects of exercise-induced muscle damage and superimposed acute fatigue on the neuromuscular activation performance of the knee flexors of nine males (age: 26.7 ± 6.1yrs; height 1.81 ± 0.05m; body mass 81.2 ± 11.7kg [mean ± SD]). Measures were obtained during three experimental conditions: (i) FAT-EEVID, involving acute fatiguing exercise performed on each assessment occasion plus a single episode of eccentric exercise performed on the first occasion and after the fatigue trial; (ii) FAT, involving the fatiguing exercise only and; (iii) CON consisting of no exercise. Assessments were performed prior to (pre) and at lh, 24h, 48h, 72h, and 168h relative to the eccentric exercise. Repeated-measures ANOVAs showed that muscle damage within the FAT-EEVID condition elicited reductions of up to 38%, 24%) and 65%> in volitional peak force, electromechanical delay and rate of force development compared to baseline and controls, respectively (F[io, 80] = 2.3 to 4.6; p to 30.7%>) following acute fatigue (Fp; i6] = 4.3 to 9.1; p ; Fp, iq = 3.9; p <0.05). The safeguarding of evoked muscle activation capability despite compromised volitional performance might reveal aspects of capabilities for emergency and protective responses during episodes of fatigue and antecedent muscle damaging exercise

    What's new in mouth rinse nutrition? Update on fluid and menthol

    Get PDF
    This session will provide an update on the perceptual, physiological and performance effects of menthol mouth swilling during exercise performance, and the associated mechanisms underpinning these changes. Cooling stimuli applied to the oral cavity impart feelings of freshness that are familiar to users of oral hygiene and other menthol containing products, such as confectionary or oral analgesics, this sensation can be imparted by either physiological or perceptual cooling. Cold fluids provide a cooling sensation by stimulating oral cold receptors, and can attenuate thirst through post-absorptive mechanisms; menthol mimics the provision of oral cooling stimuli, by acting as a cold-receptor agonist to TRPM8 channels, and trigeminal and cold-sensitive neurons in the face and oral cavity. This invokes perceived thermal changes in congruence with an environmental temperature range of 8-28°c, the magnitude of which is inversely proportional to the thickness of the stratum corneum in the region that menthol is applied. Hence, the oral application of menthol and cold fluids may lower individuals’ thermal sensation, improve thermal comfort and attenuate thirst, independent of physiological changes in temperature. This attenuation of thermal symptoms may be perceived as hedonic, and concomitantly improve exercise performance. To date literature has focused on endurance exercise performance in hot environmental conditions, with menthol mouth swilling improving time to exhaustion performance in cyclists, and time trial performance in runners and triathletes. Menthol may also provide an additive perceptual cooling stimulus when applied alongside physiological cooling strategies, in a temperature dependent manner. There are limited data pertaining to menthol mouth swilling and power related activities at present. The timing of menthol throughout the exercise bout may affect its ergogenic properties, but this research is also in its preliminary stages. Future research should aim to individualise menthol mouth swilling based upon personal preference and sensitivity; further personalisation of swilling strategies may be achieved by investigating the timing of swilling during the exercise bout and utilising menthol in conjunction with other ergogenic nutritional strategies. The possibility of habituation to menthol mouth swilling also warrants investigation

    Effects of blood transfusion on exercise capacity in thalassemia major patients

    Get PDF
    Anemia has an important role in exercise performance. However, the direct link between rapid changes of hemoglobin and exercise performance is still unknown.To find out more on this topic, we studied 18 beta-thalassemia major patients free of relevant cardiac dysfunction (age 33.5±7.2 years,males = 10). Patients performed a maximal cardiopulmolmonary exercise test (cycloergometer, personalized ramp protocol, breath-by-breath measurements of expired gases) before and the day after blood transfusion (500 cc of red cell concentrates). After blood transfusion, hemoglobin increased from 10.5±0.8 g/dL to 12.1±1.2 (p<0.001), peak VO2 from 1408 to 1546mL/min (p<0.05), and VO2 at anaerobic threshold from 965 to 1024mL/min (p<0.05). No major changes were observed as regards heart and respiratory rates either at peak exercise or at anaerobic threshold. Similarly, no relevant changes were observed in ventilation efficiency, as evaluated by the ventilation vs. carbon dioxide production relationship, or in O2 delivery to the periphery as analyzed by the VO2 vs. workload relationship. The relationship between hemoglobin and VO2 changes showed, for each g/dL of hemoglobin increase, a VO2 increase = 82.5 mL/min and 35 mL/min, at peak exercise and at anaerobic threshold, respectively. In beta-thalassemia major patients, an acute albeit partial anemia correction by blood transfusion determinates a relevant increase of exercise performance, observed both at peak exercise and at anaerobic threshold
    corecore