8,978 research outputs found

    Class-Agnostic Counting

    Full text link
    Nearly all existing counting methods are designed for a specific object class. Our work, however, aims to create a counting model able to count any class of object. To achieve this goal, we formulate counting as a matching problem, enabling us to exploit the image self-similarity property that naturally exists in object counting problems. We make the following three contributions: first, a Generic Matching Network (GMN) architecture that can potentially count any object in a class-agnostic manner; second, by reformulating the counting problem as one of matching objects, we can take advantage of the abundance of video data labeled for tracking, which contains natural repetitions suitable for training a counting model. Such data enables us to train the GMN. Third, to customize the GMN to different user requirements, an adapter module is used to specialize the model with minimal effort, i.e. using a few labeled examples, and adapting only a small fraction of the trained parameters. This is a form of few-shot learning, which is practical for domains where labels are limited due to requiring expert knowledge (e.g. microbiology). We demonstrate the flexibility of our method on a diverse set of existing counting benchmarks: specifically cells, cars, and human crowds. The model achieves competitive performance on cell and crowd counting datasets, and surpasses the state-of-the-art on the car dataset using only three training images. When training on the entire dataset, the proposed method outperforms all previous methods by a large margin.Comment: Asian Conference on Computer Vision (ACCV), 201

    A texture based approach to reconstruction of archaeological finds

    Get PDF
    Reconstruction of archaeological finds from fragments, is a tedious task requiring many hours of work from the archaeologists and restoration personnel. In this paper we present a framework for the full reconstruction of the original objects using texture and surface design information on the sherd. The texture of a band outside the border of pieces is predicted by inpainting and texture synthesis methods. The confidence of this process is also defined. Feature values are derived from these original and predicted images of pieces. A combination of the feature and confidence values is used to generate an affinity measure of corresponding pieces. The optimization of total affinity gives the best assembly of the piece. Experimental results are presented on real and artificial data

    Optimization for automated assembly of puzzles

    Get PDF
    The puzzle assembly problem has many application areas such as restoration and reconstruction of archeological findings, repairing of broken objects, solving jigsaw type puzzles, molecular docking problem, etc. The puzzle pieces usually include not only geometrical shape information but also visual information such as texture, color, and continuity of lines. This paper presents a new approach to the puzzle assembly problem that is based on using textural features and geometrical constraints. The texture of a band outside the border of pieces is predicted by inpainting and texture synthesis methods. Feature values are derived from these original and predicted images of pieces. An affinity measure of corresponding pieces is defined and alignment of the puzzle pieces is formulated as an optimization problem where the optimum assembly of the pieces is achieved by maximizing the total affinity measure. An fft based image registration technique is used to speed up the alignment of the pieces. Experimental results are presented on real and artificial data sets
    corecore