3 research outputs found

    Predicting Video Saliency with Object-to-Motion CNN and Two-layer Convolutional LSTM

    Full text link
    Over the past few years, deep neural networks (DNNs) have exhibited great success in predicting the saliency of images. However, there are few works that apply DNNs to predict the saliency of generic videos. In this paper, we propose a novel DNN-based video saliency prediction method. Specifically, we establish a large-scale eye-tracking database of videos (LEDOV), which provides sufficient data to train the DNN models for predicting video saliency. Through the statistical analysis of our LEDOV database, we find that human attention is normally attracted by objects, particularly moving objects or the moving parts of objects. Accordingly, we propose an object-to-motion convolutional neural network (OM-CNN) to learn spatio-temporal features for predicting the intra-frame saliency via exploring the information of both objectness and object motion. We further find from our database that there exists a temporal correlation of human attention with a smooth saliency transition across video frames. Therefore, we develop a two-layer convolutional long short-term memory (2C-LSTM) network in our DNN-based method, using the extracted features of OM-CNN as the input. Consequently, the inter-frame saliency maps of videos can be generated, which consider the transition of attention across video frames. Finally, the experimental results show that our method advances the state-of-the-art in video saliency prediction.Comment: Jiang, Lai and Xu, Mai and Liu, Tie and Qiao, Minglang and Wang, Zulin; DeepVS: A Deep Learning Based Video Saliency Prediction Approach;The European Conference on Computer Vision (ECCV); September 201

    Benchmark 3D eye-tracking dataset for visual saliency prediction on stereoscopic 3D video

    Full text link
    Visual Attention Models (VAMs) predict the location of an image or video regions that are most likely to attract human attention. Although saliency detection is well explored for 2D image and video content, there are only few attempts made to design 3D saliency prediction models. Newly proposed 3D visual attention models have to be validated over large-scale video saliency prediction datasets, which also contain results of eye-tracking information. There are several publicly available eye-tracking datasets for 2D image and video content. In the case of 3D, however, there is still a need for large-scale video saliency datasets for the research community for validating different 3D-VAMs. In this paper, we introduce a large-scale dataset containing eye-tracking data collected from 61 stereoscopic 3D videos (and also 2D versions of those) and 24 subjects participated in a free-viewing test. We evaluate the performance of the existing saliency detection methods over the proposed dataset. In addition, we created an online benchmark for validating the performance of the existing 2D and 3D visual attention models and facilitate addition of new VAMs to the benchmark. Our benchmark currently contains 50 different VAMs

    3D Video Quality Assessment

    Full text link
    A key factor in designing 3D systems is to understand how different visual cues and distortions affect the perceptual quality of 3D video. The ultimate way to assess video quality is through subjective tests. However, subjective evaluation is time consuming, expensive, and in most cases not even possible. An alternative solution is objective quality metrics, which attempt to model the Human Visual System (HVS) in order to assess the perceptual quality. The potential of 3D technology to significantly improve the immersiveness of video content has been hampered by the difficulty of objectively assessing Quality of Experience (QoE). A no-reference (NR) objective 3D quality metric, which could help determine capturing parameters and improve playback perceptual quality, would be welcomed by camera and display manufactures. Network providers would embrace a full-reference (FR) 3D quality metric, as they could use it to ensure efficient QoE-based resource management during compression and Quality of Service (QoS) during transmission.Comment: PhD Thesis, UBC, 201
    corecore