23 research outputs found

    An Exploratory Study on the Characteristics of Logging Practices in Mobile Apps: A Case Study on F-Droid

    Get PDF
    Logging is a common practice in software engineering. Prior research has investigated the characteristics of logging practices in system software (e.g., web servers or databases) as well as desktop applications. However, despite the popularity of mobile apps, little is known about their logging practices. In this thesis, we sought to study logging practices in mobile apps. In particular, we conduct a case study on 1,444 open source Android apps in the F-Droid repository. Through a quantitative study, we find that although mobile app logging is less pervasive than server and desktop applications, logging is leveraged in almost all studied apps. However, we find that there exist considerable differences between the logging practices of mobile apps and the logging practices in server and desktop applications observed by prior studies. In order to further understand such differences, we conduct a firehouse email interview and a qualitative annotation on the rationale of using logs in mobile app development. By comparing the logging level of each logging statement with developers' rationale of using the logs, we find that all too often (35.4%), the chosen logging level and the rationale are inconsistent. Such inconsistency may prevent the useful runtime information to be recorded or may generate unnecessary logs that may cause performance overhead. Finally, to understand the magnitude of such performance overhead, we conduct a performance evaluation between generating all the logs and not generating any logs in eight mobile apps. In general, we observe a statistically significant performance overhead based on various performance metrics (response time, CPU and battery consumption). In addition, we find that if the performance overhead of logging is significantly observed in an app, disabling the unnecessary logs indeed provides a statistically significant performance improvement. Our results show the need for a systematic guidance and automated tool support to assist in mobile logging practices

    EvLog: Evolving Log Analyzer for Anomalous Logs Identification

    Full text link
    Software logs record system activities, aiding maintainers in identifying the underlying causes for failures and enabling prompt mitigation actions. However, maintainers need to inspect a large volume of daily logs to identify the anomalous logs that reveal failure details for further diagnosis. Thus, how to automatically distinguish these anomalous logs from normal logs becomes a critical problem. Existing approaches alleviate the burden on software maintainers, but they are built upon an improper yet critical assumption: logging statements in the software remain unchanged. While software keeps evolving, our empirical study finds that evolving software brings three challenges: log parsing errors, evolving log events, and unstable log sequences. In this paper, we propose a novel unsupervised approach named Evolving Log analyzer (EvLog) to mitigate these challenges. We first build a multi-level representation extractor to process logs without parsing to prevent errors from the parser. The multi-level representations preserve the essential semantics of logs while leaving out insignificant changes in evolving events. EvLog then implements an anomaly discriminator with an attention mechanism to identify the anomalous logs and avoid the issue brought by the unstable sequence. EvLog has shown effectiveness in two real-world system evolution log datasets with an average F1 score of 0.955 and 0.847 in the intra-version setting and inter-version setting, respectively, which outperforms other state-of-the-art approaches by a wide margin. To our best knowledge, this is the first study on tackling anomalous logs over software evolution. We believe our work sheds new light on the impact of software evolution with the corresponding solutions for the log analysis community

    Logging Practices with Mobile Analytics: An Empirical Study on Firebase

    Get PDF
    Software logs are of great value in both industrial and open-source projects. Mobile analytics logging enables developers to collect logs remotely from their apps running on end user devices at the cost of recording and transmitting logs across the Internet to a centralised infrastructure.This paper makes a first step in characterising logging practices with a widely adopted mobile analytics logging library, namely Firebase Analytics. We provide an empirical evaluation of the use of Firebase Analytics in 57 open-source Android applications by studying the evolution of code-bases to understand: a) the needs-in-common that push practitioners to adopt logging practices on mobile devices, and b) the differences in the ways developers use local and remote logging.Our results indicate mobile analytics logs are less pervasive and less maintained than traditional logging code. Based on our analysis, we believe logging using mobile analytics is more user centered compared to traditional logging, where the latter is mainly used to record information for debugging purposes

    Quality Properties of Execution Tracing, an Empirical Study

    Get PDF
    The authors are grateful to all the professionals who participated in the focus groups; moreover, they also express special thanks to the management of the companies involved for making the organisation of the focus groups possible.Data are made available in the appendix including the results of the data coding process.The quality of execution tracing impacts the time to a great extent to locate errors in software components; moreover, execution tracing is the most suitable tool, in the majority of the cases, for doing postmortem analysis of failures in the field. Nevertheless, software product quality models do not adequately consider execution tracing quality at present neither do they define the quality properties of this important entity in an acceptable manner. Defining these quality properties would be the first step towards creating a quality model for execution tracing. The current research fills this gap by identifying and defining the variables, i.e., the quality properties, on the basis of which the quality of execution tracing can be judged. The present study analyses the experiences of software professionals in focus groups at multinational companies, and also scrutinises the literature to elicit the mentioned quality properties. Moreover, the present study also contributes to knowledge with the combination of methods while computing the saturation point for determining the number of the necessary focus groups. Furthermore, to pay special attention to validity, in addition to the the indicators of qualitative research: credibility, transferability, dependability, and confirmability, the authors also considered content, construct, internal and external validity

    Use and misuse of the term "Experiment" in mining software repositories research

    Get PDF
    The significant momentum and importance of Mining Software Repositories (MSR) in Software Engineering (SE) has fostered new opportunities and challenges for extensive empirical research. However, MSR researchers seem to struggle to characterize the empirical methods they use into the existing empirical SE body of knowledge. This is especially the case of MSR experiments. To provide evidence on the special characteristics of MSR experiments and their differences with experiments traditionally acknowledged in SE so far, we elicited the hallmarks that differentiate an experiment from other types of empirical studies and characterized the hallmarks and types of experiments in MSR. We analyzed MSR literature obtained from a small-scale systematic mapping study to assess the use of the term experiment in MSR. We found that 19% of the papers claiming to be an experiment are indeed not an experiment at all but also observational studies, so they use the term in a misleading way. From the remaining 81% of the papers, only one of them refers to a genuine controlled experiment while the others stand for experiments with limited control. MSR researchers tend to overlook such limitations, compromising the interpretation of the results of their studies. We provide recommendations and insights to support the improvement of MSR experiments.This work has been partially supported by the Spanish project: MCI PID2020-117191RB-I00.Peer ReviewedPostprint (author's final draft
    corecore