232 research outputs found

    Exact-Regenerating Codes between MBR and MSR Points

    Full text link
    In this paper we study distributed storage systems with exact repair. We give a construction for regenerating codes between the minimum storage regenerating (MSR) and the minimum bandwidth regenerating (MBR) points and show that in the case that the parameters n, k, and d are close to each other our constructions are close to optimal when comparing to the known capacity when only functional repair is required. We do this by showing that when the distances of the parameters n, k, and d are fixed but the actual values approach to infinity, the fraction of the performance of our codes with exact repair and the known capacity of codes with functional repair approaches to one.Comment: 5 pages, 2 figures, submitted to ITW 201

    High-Rate Regenerating Codes Through Layering

    Full text link
    In this paper, we provide explicit constructions for a class of exact-repair regenerating codes that possess a layered structure. These regenerating codes correspond to interior points on the storage-repair-bandwidth tradeoff, and compare very well in comparison to scheme that employs space-sharing between MSR and MBR codes. For the parameter set (n,k,d=k)(n,k,d=k) with n<2k1n < 2k-1, we construct a class of codes with an auxiliary parameter ww, referred to as canonical codes. With ww in the range nk<w<kn-k < w < k, these codes operate in the region between the MSR point and the MBR point, and perform significantly better than the space-sharing line. They only require a field size greater than w+nkw+n-k. For the case of (n,n1,n1)(n,n-1,n-1), canonical codes can also be shown to achieve an interior point on the line-segment joining the MSR point and the next point of slope-discontinuity on the storage-repair-bandwidth tradeoff. Thus we establish the existence of exact-repair codes on a point other than the MSR and the MBR point on the storage-repair-bandwidth tradeoff. We also construct layered regenerating codes for general parameter set (n,k<d,k)(n,k<d,k), which we refer to as non-canonical codes. These codes also perform significantly better than the space-sharing line, though they require a significantly higher field size. All the codes constructed in this paper are high-rate, can repair multiple node-failures and do not require any computation at the helper nodes. We also construct optimal codes with locality in which the local codes are layered regenerating codes.Comment: 20 pages, 9 figure

    New Codes and Inner Bounds for Exact Repair in Distributed Storage Systems

    Full text link
    We study the exact-repair tradeoff between storage and repair bandwidth in distributed storage systems (DSS). We give new inner bounds for the tradeoff region and provide code constructions that achieve these bounds.Comment: Submitted to the IEEE International Symposium on Information Theory (ISIT) 2014. This draft contains 8 pages and 4 figure
    corecore