48,727 research outputs found

    Smart Procurement Of Naturally Generated Energy (SPONGE) for PHEV's

    Get PDF
    In this paper we propose a new engine management system for hybrid vehicles to enable energy providers and car manufacturers to provide new services. Energy forecasts are used to collaboratively orchestrate the behaviour of engine management systems of a fleet of PHEV's to absorb oncoming energy in an smart manner. Cooperative algorithms are suggested to manage the energy absorption in an optimal manner for a fleet of vehicles, and the mobility simulator SUMO is used to show simple simulations to support the efficacy of the proposed idea.Comment: Updated typos with respect to previous versio

    The concept of energy traceability: Application to EV electricity charging by Res

    Get PDF
    The energy sustainability, in the era of sources diversification , can be guaranteed by an energy resources utilization most correct, foreseeing no predominance of one source over the others in any area of the world but a proper energy mix, based on locally available resources and needs. In this scenario, manageable with a smart grid system, a virtuous use of RES must be visible, recognizable and quantifiable, in one word traceable. The innovation of the traceability concept consists in the possibility of having information concerning the exact origin of the electricity used for a specific end use, in this case EV charging . The traceability, in a context of increasingly sustainability and smartness city, is an important develop tool because only in this way it is possible to quantify the real emissions produced by EVs and to ensure the real foresight of grid load. This paper wants investigate the real ways to introduce this kind of real energy accounting, through the traceabilit

    Optimal Net-Load Balancing in Smart Grids with High PV Penetration

    Full text link
    Mitigating Supply-Demand mismatch is critical for smooth power grid operation. Traditionally, load curtailment techniques such as Demand Response (DR) have been used for this purpose. However, these cannot be the only component of a net-load balancing framework for Smart Grids with high PV penetration. These grids can sometimes exhibit supply surplus causing over-voltages. Supply curtailment techniques such as Volt-Var Optimizations are complex and computationally expensive. This increases the complexity of net-load balancing systems used by the grid operator and limits their scalability. Recently new technologies have been developed that enable the rapid and selective connection of PV modules of an installation to the grid. Taking advantage of these advancements, we develop a unified optimal net-load balancing framework which performs both load and solar curtailment. We show that when the available curtailment values are discrete, this problem is NP-hard and develop bounded approximation algorithms for minimizing the curtailment cost. Our algorithms produce fast solutions, given the tight timing constraints required for grid operation. We also incorporate the notion of fairness to ensure that curtailment is evenly distributed among all the nodes. Finally, we develop an online algorithm which performs net-load balancing using only data available for the current interval. Using both theoretical analysis and practical evaluations, we show that our net-load balancing algorithms provide solutions which are close to optimal in a small amount of time.Comment: 11 pages. To be published in the 4th ACM International Conference on Systems for Energy-Efficient Built Environments (BuildSys 17) Changes from previous version: Fixed a bug in Algorithm 1 which was causing some min cost solutions to be misse
    • …
    corecore