1,713 research outputs found

    Metropolis Integration Schemes for Self-Adjoint Diffusions

    Full text link
    We present explicit methods for simulating diffusions whose generator is self-adjoint with respect to a known (but possibly not normalizable) density. These methods exploit this property and combine an optimized Runge-Kutta algorithm with a Metropolis-Hastings Monte-Carlo scheme. The resulting numerical integration scheme is shown to be weakly accurate at finite noise and to gain higher order accuracy in the small noise limit. It also permits to avoid computing explicitly certain terms in the equation, such as the divergence of the mobility tensor, which can be tedious to calculate. Finally, the scheme is shown to be ergodic with respect to the exact equilibrium probability distribution of the diffusion when it exists. These results are illustrated on several examples including a Brownian dynamics simulation of DNA in a solvent. In this example, the proposed scheme is able to accurately compute dynamics at time step sizes that are an order of magnitude (or more) larger than those permitted with commonly used explicit predictor-corrector schemes.Comment: 54 pages, 8 figures, To appear in MM

    The Euler-Maruyama approximation for the absorption time of the CEV diffusion

    Full text link
    A standard convergence analysis of the simulation schemes for the hitting times of diffusions typically requires non-degeneracy of their coefficients on the boundary, which excludes the possibility of absorption. In this paper we consider the CEV diffusion from the mathematical finance and show how a weakly consistent approximation for the absorption time can be constructed, using the Euler-Maruyama scheme

    Efficient estimation of one-dimensional diffusion first passage time densities via Monte Carlo simulation

    Full text link
    We propose a method for estimating first passage time densities of one-dimensional diffusions via Monte Carlo simulation. Our approach involves a representation of the first passage time density as expectation of a functional of the three-dimensional Brownian bridge. As the latter process can be simulated exactly, our method leads to almost unbiased estimators. Furthermore, since the density is estimated directly, a convergence of order 1/N1 / \sqrt{N}, where NN is the sample size, is achieved, the last being in sharp contrast to the slower non-parametric rates achieved by kernel smoothing of cumulative distribution functions.Comment: 14 pages, 2 figure

    First Passage Time Distribution for Anomalous Diffusion

    Full text link
    We study the first passage time (FPT) problem in Levy type of anomalous diffusion. Using the recently formulated fractional Fokker-Planck equation, we obtain an analytic expression for the FPT distribution which, in the large passage time limit, is characterized by a universal power law. Contrasting this power law with the asymptotic FPT distribution from another type of anomalous diffusion exemplified by the fractional Brownian motion, we show that the two types of anomalous diffusions give rise to two distinct scaling behavior.Comment: 11 pages, 2 figure
    corecore