17,702 research outputs found

    Efficient Finite Difference Method for Computing Sensitivities of Biochemical Reactions

    Full text link
    Sensitivity analysis of biochemical reactions aims at quantifying the dependence of the reaction dynamics on the reaction rates. The computation of the parameter sensitivities, however, poses many computational challenges when taking stochastic noise into account. This paper proposes a new finite difference method for efficiently computing sensitivities of biochemical reactions. We employ propensity bounds of reactions to couple the simulation of the nominal and perturbed processes. The exactness of the simulation is reserved by applying the rejection-based mechanism. For each simulation step, the nominal and perturbed processes under our coupling strategy are synchronized and often jump together, increasing their positive correlation and hence reducing the variance of the estimator. The distinctive feature of our approach in comparison with existing coupling approaches is that it only needs to maintain a single data structure storing propensity bounds of reactions during the simulation of the nominal and perturbed processes. Our approach allows to computing sensitivities of many reaction rates simultaneously. Moreover, the data structure does not require to be updated frequently, hence improving the computational cost. This feature is especially useful when applied to large reaction networks. We benchmark our method on biological reaction models to prove its applicability and efficiency.Comment: 29 pages with 6 figures, 2 table

    How Many Subpopulations is Too Many? Exponential Lower Bounds for Inferring Population Histories

    Full text link
    Reconstruction of population histories is a central problem in population genetics. Existing coalescent-based methods, like the seminal work of Li and Durbin (Nature, 2011), attempt to solve this problem using sequence data but have no rigorous guarantees. Determining the amount of data needed to correctly reconstruct population histories is a major challenge. Using a variety of tools from information theory, the theory of extremal polynomials, and approximation theory, we prove new sharp information-theoretic lower bounds on the problem of reconstructing population structure -- the history of multiple subpopulations that merge, split and change sizes over time. Our lower bounds are exponential in the number of subpopulations, even when reconstructing recent histories. We demonstrate the sharpness of our lower bounds by providing algorithms for distinguishing and learning population histories with matching dependence on the number of subpopulations. Along the way and of independent interest, we essentially determine the optimal number of samples needed to learn an exponential mixture distribution information-theoretically, proving the upper bound by analyzing natural (and efficient) algorithms for this problem.Comment: 38 pages, Appeared in RECOMB 201

    Can one hear the shape of a population history?

    Full text link
    Reconstructing past population size from present day genetic data is a major goal of population genetics. Recent empirical studies infer population size history using coalescent-based models applied to a small number of individuals. Here we provide tight bounds on the amount of exact coalescence time data needed to recover the population size history of a single, panmictic population at a certain level of accuracy. In practice, coalescence times are estimated from sequence data and so our lower bounds should be taken as rather conservative.Comment: 22 pages, 7 figures; v2 is significantly revised from v
    corecore