3 research outputs found

    Computational models for inferring biochemical networks

    Get PDF
    Biochemical networks are of great practical importance. The interaction of biological compounds in cells has been enforced to a proper understanding by the numerous bioinformatics projects, which contributed to a vast amount of biological information. The construction of biochemical systems (systems of chemical reactions), which include both topology and kinetic constants of the chemical reactions, is NP-hard and is a well-studied system biology problem. In this paper, we propose a hybrid architecture, which combines genetic programming and simulated annealing in order to generate and optimize both the topology (the network) and the reaction rates of a biochemical system. Simulations and analysis of an artificial model and three real models (two models and the noisy version of one of them) show promising results for the proposed method.The Romanian National Authority for Scientific Research, CNDI–UEFISCDI, Project No. PN-II-PT-PCCA-2011-3.2-0917

    Turing's Diffusive Threshold in Random Reaction-Diffusion Systems.

    Get PDF
    Turing instabilities of reaction-diffusion systems can only arise if the diffusivities of the chemical species are sufficiently different. This threshold is unphysical in most systems with N=2 diffusing species, forcing experimental realizations of the instability to rely on fluctuations or additional nondiffusing species. Here, we ask whether this diffusive threshold lowers for N>2 to allow "true" Turing instabilities. Inspired by May's analysis of the stability of random ecological communities, we analyze the probability distribution of the diffusive threshold in reaction-diffusion systems defined by random matrices describing linearized dynamics near a homogeneous fixed point. In the numerically tractable cases Nâ©˝6, we find that the diffusive threshold becomes more likely to be smaller and physical as N increases, and that most of these many-species instabilities cannot be described by reduced models with fewer diffusing species.Gordon and Betty Moore Foundatio
    corecore