43,808 research outputs found

    Evolving Clustered Random Networks

    Get PDF
    We propose a Markov chain simulation method to generate simple connected random graphs with a specified degree sequence and level of clustering. The networks generated by our algorithm are random in all other respects and can thus serve as generic models for studying the impacts of degree distributions and clustering on dynamical processes as well as null models for detecting other structural properties in empirical networks

    Tunable and Growing Network Generation Model with Community Structures

    Full text link
    Recent years have seen a growing interest in the modeling and simulation of social networks to understand several social phenomena. Two important classes of networks, small world and scale free networks have gained a lot of research interest. Another important characteristic of social networks is the presence of community structures. Many social processes such as information diffusion and disease epidemics depend on the presence of community structures making it an important property for network generation models to be incorporated. In this paper, we present a tunable and growing network generation model with small world and scale free properties as well as the presence of community structures. The major contribution of this model is that the communities thus created satisfy three important structural properties: connectivity within each community follows power-law, communities have high clustering coefficient and hierarchical community structures are present in the networks generated using the proposed model. Furthermore, the model is highly robust and capable of producing networks with a number of different topological characteristics varying clustering coefficient and inter-cluster edges. Our simulation results show that the model produces small world and scale free networks along with the presence of communities depicting real world societies and social networks.Comment: Social Computing and Its Applications, SCA 13, Karlsruhe : Germany (2013

    A Triclustering Approach for Time Evolving Graphs

    Full text link
    This paper introduces a novel technique to track structures in time evolving graphs. The method is based on a parameter free approach for three-dimensional co-clustering of the source vertices, the target vertices and the time. All these features are simultaneously segmented in order to build time segments and clusters of vertices whose edge distributions are similar and evolve in the same way over the time segments. The main novelty of this approach lies in that the time segments are directly inferred from the evolution of the edge distribution between the vertices, thus not requiring the user to make an a priori discretization. Experiments conducted on a synthetic dataset illustrate the good behaviour of the technique, and a study of a real-life dataset shows the potential of the proposed approach for exploratory data analysis

    On the formation of structure in growing networks

    Full text link
    Based on the formation of triad junctions, the proposed mechanism generates networks that exhibit extended rather than single power law behavior. Triad formation guarantees strong neighborhood clustering and community-level characteristics as the network size grows to infinity. The asymptotic behavior is of interest in the study of directed networks in which (i) the formation of links cannot be described according to the principle of preferential attachment; (ii) the in-degree distribution fits a power law for nodes with a high degree and an exponential form otherwise; (iii) clustering properties emerge at multiple scales and depend on both the number of links that newly added nodes establish and the probability of forming triads; and (iv) groups of nodes form modules that feature less links to the rest of the nodes.Comment: 17 pages, 9 figures, we apply the proposed mechanism to generate network realizations that resemble the degree distribution and clustering properties of an empirical network with no directed cycles (i.e., when the model parameter n=0), updated reference

    Correlation effects in a simple model of small-world network

    Full text link
    We analyze the effect of correlations in a simple model of small world network by obtaining exact analytical expressions for the distribution of shortest paths in the network. We enter correlations into a simple model with a distinguished site, by taking the random connections to this site from an Ising distribution. Our method shows how the transfer matrix technique can be used in the new context of small world networks.Comment: 10 pages, 3 figure

    Topology of the conceptual network of language

    Full text link
    We define two words in a language to be connected if they express similar concepts. The network of connections among the many thousands of words that make up a language is important not only for the study of the structure and evolution of languages, but also for cognitive science. We study this issue quantitatively, by mapping out the conceptual network of the English language, with the connections being defined by the entries in a Thesaurus dictionary. We find that this network presents a small-world structure, with an amazingly small average shortest path, and appears to exhibit an asymptotic scale-free feature with algebraic connectivity distribution.Comment: 4 pages, 2 figures, Revte
    • …
    corecore