3 research outputs found

    Automated Design of Network Security Metrics

    Get PDF
    Many abstract security measurements are based on characteristics of a graph that represents the network. These are typically simple and quick to compute but are often of little practical use in making real-world predictions. Practical network security is often measured using simulation or real-world exercises. These approaches better represent realistic outcomes but can be costly and time-consuming. This work aims to combine the strengths of these two approaches, developing efficient heuristics that accurately predict attack success. Hyper-heuristic machine learning techniques, trained on network attack simulation training data, are used to produce novel graph-based security metrics. These low-cost metrics serve as an approximation for simulation when measuring network security in real time. The approach is tested and verified using a simulation based on activity from an actual large enterprise network. The results demonstrate the potential of using hyper-heuristic techniques to rapidly evolve and react to emerging cybersecurity threats

    Evolving Bipartite Authentication Graph Partitions

    No full text
    As large scale enterprise computer networks become more ubiquitous, finding the appropriate balance between user convenience and user access control is an increasingly challenging proposition. Suboptimal partitioning of users’ access and available services contributes to the vulnerability of enterprise networks. Previous edge-cut partitioning methods unduly restrict users’ access to network resources. This paper introduces a novel method of network partitioning superior to the current state-of-the-art which minimizes user impact by providing alternate avenues for access that reduce vulnerability. Networks are modeled as bipartite authentication access graphs and a multi-objective evolutionary algorithm is used to simultaneously minimize the size of large connected components while minimizing overall restrictions on network users. Results are presented on a real world data set that demonstrate the effectiveness of the introduced method compared to previous naive methods

    Evolving Bipartite Authentication Graph Partitions

    No full text
    corecore