380,373 research outputs found
An Investigation Into the use of Swarm Intelligence for an Evolutionary Algorithm Optimisation; The Optimisation Performance of Differential Evolution Algorithm Coupled with Stochastic Diffusion Search
The integration of Swarm Intelligence (SI) algorithms and Evolutionary algorithms (EAs) might be one of the future approaches in the Evolutionary Computation (EC). This work narrates the early research on using Stochastic Diffusion Search (SDS) -- a swarm intelligence algorithm -- to empower the Differential Evolution (DE) -- an evolutionary algorithm -- over a set of optimisation problems. The results reported herein suggest that the powerful resource allocation mechanism deployed in SDS has the potential to improve the optimisation capability of the classical evolutionary algorithm used in this experiment. Different performance measures and statistical analyses were utilised to monitor the behaviour of the final coupled algorithm
The Self-Organization of Interaction Networks for Nature-Inspired Optimization
Over the last decade, significant progress has been made in understanding
complex biological systems, however there have been few attempts at
incorporating this knowledge into nature inspired optimization algorithms. In
this paper, we present a first attempt at incorporating some of the basic
structural properties of complex biological systems which are believed to be
necessary preconditions for system qualities such as robustness. In particular,
we focus on two important conditions missing in Evolutionary Algorithm
populations; a self-organized definition of locality and interaction epistasis.
We demonstrate that these two features, when combined, provide algorithm
behaviors not observed in the canonical Evolutionary Algorithm or in
Evolutionary Algorithms with structured populations such as the Cellular
Genetic Algorithm. The most noticeable change in algorithm behavior is an
unprecedented capacity for sustainable coexistence of genetically distinct
individuals within a single population. This capacity for sustained genetic
diversity is not imposed on the population but instead emerges as a natural
consequence of the dynamics of the system
- …
