3 research outputs found

    Evolutionary reaction systems

    No full text
    In the recent years many bio-inspired computational methods were defined and successfully applied to real life problems. Examples of those methods are particle swarm optimization, ant colony, evolutionary algorithms, and many others. At the same time, computational formalisms inspired by natural systems were defined and their suitability to represent different functions efficiently was studied. One of those is a formalism known as reaction systems. The aim of this work is to establish, for the first time, a relationship between evolutionary algorithms and reaction systems, by proposing an evolutionary version of reaction systems. In this paper we show that the resulting new genetic programming system has better, or at least comparable performances to a set of well known machine learning methods on a set of problems, also including real-life applications. Furthermore, we discuss the expressiveness of the solutions evolved by the presented evolutionary reaction systems

    Parameter tuning of evolutionary reactions systems

    No full text
    Reaction systems is a formalism inspired by chemical reactions introduced by Rozenberg and Ehrenfeucht. Recently, an evolutionary algorithm based on this formalism, called Evolutionary Reaction Systems, has been presented. This new algorithm proved to have comparable performances to other well-established machine learning methods, like genetic programming, neural networks and support vector machines on both artificial and real-life problems. Even if the results are encouraging, to make Evolutionary Reaction Systems an established evolutionary algorithm, an in depth analysis of the effect of its parameters on the search process is needed, with particular focus on those parameters that are typical of Evolutionary Reaction Systems and do not have a counterpart in traditional evolutionary algorithms. Here we address this problem for the first time. The results we present show that one particular parameter, between the ones tested, has a great influence on the performances of Evolutionary Reaction Systems, and thus its setting deserves practitioners' particular attention: the number of symbols used to represent the reactions that compose the system. Furthermore, this work represents a first step towards the definition of a set of default parameter values for Evolutionary Reaction Systems, that should facilitate their use for beginners or inexpert practitioners

    A new genetic programming framework based on reaction systems

    No full text
    3noThis paper presents a new genetic programming framework called Evolutionary Reaction Systems. It is based on a recently defined computational formalism, inspired by chemical reactions, called Reaction Systems, and it has several properties that distinguish it from other existing genetic programming frameworks, making it interesting and worthy of investigation. For instance, it allows us to express complex constructs in a simple and intuitive way, and it lightens the final user from the task of defining the set of primitive functions used to build up the evolved programs. Given that Evolutionary Reaction Systems is new and it has small similarities with other existing genetic programming frameworks, a first phase of this work is dedicated to a study of some important parameters and their influence on the algorithm’s performance. Successively, we use the best parameter setting found to compare Evolutionary Reaction Systems with other well established machine learning methods, including standard tree-based genetic programming. The presented results show that Evolutionary Reaction Systems are competitive with, and in some cases even better than, the other studied methods on a wide set of benchmarks.nonenoneManzoni Luca; Castelli Mauro; Vanneschi LeonardoManzoni, Luca; Castelli, Mauro; Vanneschi, Leonard
    corecore