77 research outputs found

    Beam Orientation Optimization for Intensity Modulated Radiation Therapy using Adaptive l1 Minimization

    Full text link
    Beam orientation optimization (BOO) is a key component in the process of IMRT treatment planning. It determines to what degree one can achieve a good treatment plan quality in the subsequent plan optimization process. In this paper, we have developed a BOO algorithm via adaptive l_1 minimization. Specifically, we introduce a sparsity energy function term into our model which contains weighting factors for each beam angle adaptively adjusted during the optimization process. Such an energy term favors small number of beam angles. By optimizing a total energy function containing a dosimetric term and the sparsity term, we are able to identify the unimportant beam angles and gradually remove them without largely sacrificing the dosimetric objective. In one typical prostate case, the convergence property of our algorithm, as well as the how the beam angles are selected during the optimization process, is demonstrated. Fluence map optimization (FMO) is then performed based on the optimized beam angles. The resulted plan quality is presented and found to be better than that obtained from unoptimized (equiangular) beam orientations. We have further systematically validated our algorithm in the contexts of 5-9 coplanar beams for 5 prostate cases and 1 head and neck case. For each case, the final FMO objective function value is used to compare the optimized beam orientations and the equiangular ones. It is found that, our BOO algorithm can lead to beam configurations which attain lower FMO objective function values than corresponding equiangular cases, indicating the effectiveness of our BOO algorithm.Comment: 19 pages, 2 tables, and 5 figure

    A Survey on 4{\pi} Treatment Planning Technique for Radiation Therapy

    Full text link
    The challenge of removing cancerous cells lies in the limitation of organ at risk, which restricts the ability to increase the radiation dose adequately for enhancing treatment effectiveness. This survey provides a comprehensive overview of the 4{\pi} planning technique for radiation therapy. In radiation therapy, the gantry of Medical linear accelerators can rotate around the couch to administer radiation from various angles. Researchers have introduced the 4{\pi} technique with the objective of increasing the radiation dose to tumors while minimizing damage to nearby organs. While dose escalation may not be feasible in certain cases due to potential complications in normal tissues, the 4{\pi} technique enables dose escalation for certain types of cancers. The optimization problem formulation constitutes a major innovation in the 4{\pi} technique. In this survey, we went thorough optimization problem of 4{\pi} technique and discussed about the available investigations that have been performed on 4{\pi} technique

    Fully automated treatment planning of spinal metastases - A comparison to manual planning of Volumetric Modulated Arc Therapy for conventionally fractionated irradiation

    Get PDF
    _Background:_ Planning for Volumetric Modulated Arc Therapy (VMAT) may be time consuming and its use is limited by available staff resources. Automated multicriterial treatment planning can eliminate this bottleneck. We compared automatically created (auto) VMAT plans generated by Erasmus-iCycle to manually created VMAT plans for treatment of spinal metastases. _Methods:_ Forty-two targets in 32 patients were analyzed. Lungs and kidneys were defined as organs at risk (OARs). Twenty-two patients received radiotherapy on kidney levels, 17 on lung levels, and 3 on both levels. _Results:_ All Erasmus-iCycle plans were clinically acceptable. When compared to manual plans, planning target volume (PTV) coverage of auto plans was significantly better. The Homogeneity Index did not differ significantly between the groups. Mean dose to OARs was lower in auto plans concerning both kidneys and the left lung. One hotspot (>110% of D50%) occurred in the spinal cord of one auto plan (33.2 Gy, D50%: 30 Gy). Treatment time was 7% longer in auto plans. _Conclusions:_ Erasmus-iCycle plans showed better target coverage and sparing of OARs at the expense of minimally longer treatment times (for which no constraint was set)

    Beam selection for stereotactic ablative radiotherapy using Cyberknife with multileaf collimation.

    Get PDF
    The Cyberknife system (Accuray Inc., Sunnyvale, CA) enables radiotherapy using stereotactic ablative body radiotherapy (SABR) with a large number of non-coplanar beam orientations. Recently, a multileaf collimator has also been available to allow flexibility in field shaping. This work aims to evaluate the quality of treatment plans obtainable with the multileaf collimator. Specifically, the aim is to find a subset of beam orientations from a predetermined set of candidate directions, such that the treatment quality is maintained but the treatment time is reduced. An evolutionary algorithm is used to successively refine a randomly selected starting set of beam orientations. By using an efficient computational framework, clinically useful solutions can be found in several hours. It is found that 15 beam orientations are able to provide treatment quality which approaches that of the candidate beam set of 110 beam orientations, but with approximately half of the estimated treatment time. Choice of an efficient subset of beam orientations offers the possibility to improve the patient experience and maximise the number of patients treated

    Automated Heuristic Optimization of Prostate VMAT Treatment Planning

    Get PDF
    Purpose: To investigate a genetic algorithm approach to automatic treatment planning. Methods: A Python script based on genetic algorithm (GA) was implemented for VMAT treatment planning of prostate tumor. The script was implemented in RayStation treatment planning system using Python code. Two different clinical prescriptions were considered: 78 Gy prescribed to planning target volume in 39 fractions (GROUP 1) and simultaneous integrated boost (70.2 Gy to prostate bed and 61.1 Gy to seminal vesicles) in 26 fractions (GROUP 2). The script automatically optimizes doses to PTV and OARs according to GA. A comparison with corresponding plans created with Monaco TPS (M) and Auto-Planning module of Pinnacle3 (AP) was carried out. The plans were evaluated with a total score (TS) of PlanIQ software in terms of target coverage and sparing of OARs as well as clinical score (CS) performed by a Radiation Oncologist. Results: In GROUP 1, mean value of TS were 150.6 ± 30.7, 146.3 ± 36.1 and 137.4 ± 35.7 for AP, GA and M respectively. For GROUP 2, mean value for TS were 163.5 ± 16.8, 163.4 ± 24.7 and 162.9 ± 16.6 for AP, GA and M respectively with no significance differences. In terms of CS, the highest value has been attributed to GA in four patients out of five for both GROUP 1 and 2. Conclusions: Genetic approach is practicable for prostate VMAT plan generation and studies are underway in other anatomical sites such as Head and Neck and Rectum

    The Scatter Search Based Algorithm for Beam Angle Optimization in Intensity-Modulated Radiation Therapy

    Get PDF
    This article introduces a new framework for beam angle optimization (BAO) in intensity-modulated radiation therapy (IMRT) using the Scatter Search Based Algorithm. The potential benefits of plans employing the coplanar optimized beam sets are also examined. In the proposed beam angle selection algorithm, the problem is solved in two steps. Initially, the gantry angles are selected using the Scatter Search Based Algorithm, which is a global optimization method. Then, for each beam configuration, the intensity profile is calculated by the conjugate gradient method to score each beam angle set chosen. A simulated phantom case with obvious optimal beam angles was used to benchmark the validity of the presented algorithm. Two clinical cases (TG-119 phantom and prostate cases) were examined to prepare a dose volume histogram (DVH) and determine the dose distribution to evaluate efficiency of the algorithm. A clinical plan with the optimized beam configuration was compared with an equiangular plan to determine the efficiency of the proposed algorithm. The BAO plans yielded significant improvements in the DVHs and dose distributions compared to the equispaced coplanar beams for each case. The proposed algorithm showed its potential to effectively select the beam direction for IMRT inverse planning at different tumor sites. © 2018 Ali Ghanbarzadeh et al
    corecore