4 research outputs found

    Informational drives for sensor evolution

    Get PDF
    © 2012 Massachusetts Institute of Technology Published under a Creative Commons Attribution 4.0 International (CC BY 4.0) licenseIt has been hypothesized that the evolution of sensors is a pivotal driver for the evolution of organisms, and especially, as a crucial part of the perception-action loop, a driver for cognitive development. The questions of why and how this is the case are important: what are the principles that push the evolution of sensorimotor systems? An interesting aspect of this problem is the co-option of sensors for functions other than those originally driving their development (e.g. the auditive sense of bats being employed as a 'visual' modality). Even more striking is the phenomenon found in nature of sensors being driven to the limits of precision, while starting from much simpler beginnings. While a large potential for diversification and exaptation is visible in the observed phenotypes, gaining a deeper understanding of why and how this can be achieved is a significant problem. In this present paper, we will introduce a formal and generic information-theoretic model for understanding potential drives of sensor evolution, both in terms of improving sensory ability and in terms of extending and/or shifting sensory function

    Evolving hierarchical visually guided neural network agents to investigate complex interactions.

    Get PDF
    A complex system is a system with a large number of interacting components without any mechanism for central control that displays self organisation. Understanding how these interactions affect the overall behaviour of a system is of great interest to science. Indeed, researchers use a wide variety of models to investigate complex systems. The problem with most models is that they disregard the hierarchical nature of complex systems: they ignore the fact that components of real world systems tend to be complex systems as well. This prevents researchers from investigating the interactions taking place between the lower and the higher levels of the model which may be crucial in order to gain a full understanding of the examined phenomena and of complex systems in general. Therefore, this thesis introduces Mosaic World, a multi-agent model for the purpose of investigating interactions (focusing on 'complex' multilevel interactions) within a hierarchical complex system, in addition to other computational and biological hypotheses. Mosaic World comprises a population of evolving neural network agents that inhabit a changing visual environment. By analysing the interactions that occur within Mosaic World, this thesis demonstrates the importance of incorporating hierarchical complexity into a model, and contributes to our understanding of hierarchical complex systems by showing how selective pressures cause differentiation across levels. Additionally, the study of multilevel interactions is used to probe several hypotheses and provides the following contributions among others: Analysis of agent evolvability as affected by the usage of different types of structural mutations in the evolutionary process. Demonstration that agents controlled by modular neural networks are fitter than agents that are controlled by non-modular neural networks the improvement in fitness occurs through specialisation of modules. Empirical support for a biological theory suggesting that colour vision evolved as a method of dealing with ambiguous stimuli

    Evolution of Visual Resolution Constrained By a Trade-Off

    No full text
    The evolution of visual systems is constrained by a trade-off between spatial and temporal resolution. In this paper we aim at identifying the causes of the trade-off at the retinal level in both artificial and natural visual systems. We start by selecting two factors that limit the values of spatial and temporal resolution. Then we show in two experiments on the evolution of an artificial system that the two factors induce trade-off curves connecting the evolved values of spatial and temporal resolution. A comparison of the experimental results with the resolution evolved in natural visual systems leads us to the conclusion that in natural systems the same factors are responsible for the observed trade-off
    corecore