518 research outputs found

    Robustness and balancing of parallel connected power devices : SiC vs. CoolMOS

    Get PDF
    Differences in the thermal and electrical switching time constants between parallel connected devices cause imbalances in the power and temperature distribution thereby reducing module robustness. In this paper, the impact of electro-thermal variations (gate and thermal resistance) between parallel connected devices on module robustness is investigated for 900V-CoolMOS and 1.2kV-SiC MOSFETs under clamped inductive switching (CIS) and unclamped inductive switching (UIS). Under CIS, the difference in the steady-state junction temperature (ΔTJ) and switching energy (ΔESW) between the parallel connected devices for a given difference in the gate and thermal resistance (ΔRG & ΔRTH) is used as the metric for determining robustness to electrothermal variations i.e. how well the devices maintain uniform temperature in-spite of switching with different rates and thermal resistances. Under UIS conditions, the change in the maximum avalanche current/energy prior to device failure as a function of the ΔTJ and ΔRG between the parallel connected devices is used as the metric. Under both CIS and UIS, SiC devices show better performance with minimal negative response to electrothermal variations between the parallel connected devices. Finite element models have also been performed showing the dynamics of BJT latch-up during UIS for the different technologies

    Modeling Emerging Semiconductor Devices for Circuit Simulation

    Get PDF
    Circuit simulation is an indispensable part of modern IC design. The significant cost of fabrication has driven researchers to verify the chip functionality through simulation before submitting the design for final fabrication. With the impending end of Moore’s Law, researchers all over the world are looking for new devices with enhanced functionality. A plethora of promising emerging devices has been proposed in recent years. In order to leverage the full potential of such devices, circuit designers need fast, reliable models for SPICE simulation to explore different applications. Most of these new devices have complex underlying physical mechanism rendering the model development an extremely challenging task. For the models to be of practical use, they have to enable fast and accurate simulation that rules out the possibility of numerically solving a system of partial differential equations to arrive at a solution. In this chapter, we show how different modeling approaches can be used to simulate three emerging semiconductor devices namely, silicon- on- insulator four gate transistor(G4FET), perimeter gated single photon avalanche diode (PG-SPAD) and insulator-metal transistor (IMT) device with volatile memristance. All the models have been verified against experimental /TCAD data and implemented in commercial circuit simulator

    Bolometers

    Get PDF
    Infrared Detectors and technologies are very important for a wide range of applications, not only for Military but also for various civilian applications. Comparatively fast bolometers can provide large quantities of low cost devices opening up a new era in infrared technologies. This book deals with various aspects of bolometer developments. It covers bolometer material aspects, different types of bolometers, performance limitations, applications and future trends. The chapters in this book will be useful for senior researchers as well as beginning graduate students

    High-Speed Performance, Power and Thermal Co-simulation For SoC Design

    Get PDF
    This dissertation presents a multi-faceted effort at developing standard System Design Language based tools that allow designers to the model power and thermal behavior of SoCs, including heterogeneous SoCs that include non-digital components. The research contributions made in this dissertation include: • SystemC-based power/performance co-simulation for the Intel XScale microprocessor. We performed detailed characterization of the power dissipation patterns of a variety of system components and used these results to build detailed power models, including a highly accurate, validated instruction-level power model of the XScale processor. We also proposed a scalable, efficient and validated methodology for incorporating fast, accurate power modeling capabilities into system description languages such as SystemC. This was validated against physical measurements of hardware power dissipation. • Modeling the behavior of non-digital SoC components within standard System Design Languages. We presented an approach for modeling the functionality, performance, power, and thermal behavior of a complex class of non-digital components — MEMS microhotplate-based gas sensors — within a SystemC design framework. The components modeled include both digital components (such as microprocessors, busses and memory) and MEMS devices comprising a gas sensor SoC. The first SystemC models of a MEMS-based SoC and the first SystemC models of MEMS thermal behavior were described. Techniques for significantly improving simulation speed were proposed, and their impact quantified. • Vertically Integrated Execution-Driven Power, Performance and Thermal Co-Simulation For SoCs. We adapted the above techniques and used numerical methods to model the system of differential equations that governs on-chip thermal diffusion. This allows a single high-speed simulation to span performance, power and thermal modeling of a design. It also allows feedback behaviors, such as the impact of temperature on power dissipation or performance, to be modeled seamlessly. We validated the thermal equation-solving engine on test layouts against detailed low-level tools, and illustrated the power of such a strategy by demonstrating a series of studies that designers can perform using such tools. We also assessed how simulation and accuracy are impacted by spatial and temporal resolution used for thermal modeling

    Analysis of design strategies for RF ESD problems in CMOS circuits

    Get PDF
    This thesis analyses the design strategies used to protect RF circuits that are implemented in CMOS technologies. It investigates, in detail, the physical mechanisms involved when a ggNMOS structure is exposed to an ESD event and undergoes snapback. The understanding gained is used to understand why the performance of the current RF ESD clamp is poor and suggestions are made as to how the performance of ggNMOS clamps can be improved beyond the current body of knowledge. The ultimate aim is to be able to design effective ESD protection clamps whilst minimising the effect the circuit has on RF I/O signals. A current ggNMOS based RF ESD I/O protection circuit is analysed in detail using a Transmission Line Pulse (TLP) tester. This is shown to be a very effective diagnostic tool by showing many characteristics of the ggNMOS during the triggering and conducting phase of the ESD event and demonstrate deficiencies in the clamp design. The use of a FIB enhances the analysis by allowing the isolation of individual components in the circuit and therefore their analysis using the TLP tester. SPICE simulations are used to provide further commentary on the debate surrounding the specification required of a TLP tester for there to be a good correlation between a TLP test and the industry standard Human Body Model (HBM) ESD test. Finite element simulations are used to probe deeper in to the mechanisms involved when a ggNMOS undergoes snapback especially with regard to the contribution parasitic components within the ggNMOS make to the snapback process. New ggNMOS clamps are proposed which after some modification are shown to work. Some of the finite element experiments are repeated in a 0.18ÎĽĎ€7. process CMOS test chip and a comparison is made between the two sets of results. In the concluding chapter understanding that has been gained from previous chapters is combined with the published body of knowledge to suggest and explain improvements in the design of a ggNMOS for RF and standard applications. These improvements will improve homogeneity of ggNMOS operation thus allowing the device size to be reduced and parasitic loading for a given ESD performance. These techniques can also be used to ensure that the ESD current does not take an unintended path through the chip

    Smart Bolometer: Toward Monolithic Bolometer with Smart Functions

    Get PDF
    The content of this chapter refers to uncooled resistive bolometers amd the challenge that consists in their integration into monolithic devices exhibiting smart functions. Uncooled resistive bolometers are the essential constitutive element of the majority of existing uncooled infrared imaging systems; they are referred to as microbolometer pixels in that type of application where matrixes of such elementary devices are used. uncooled bolometers represent more than 95% of the market of infrared imaging systems in 2010 (yole 2010) and infrared imaging systems are required for more and more applications

    MEMS Technology for Biomedical Imaging Applications

    Get PDF
    Biomedical imaging is the key technique and process to create informative images of the human body or other organic structures for clinical purposes or medical science. Micro-electro-mechanical systems (MEMS) technology has demonstrated enormous potential in biomedical imaging applications due to its outstanding advantages of, for instance, miniaturization, high speed, higher resolution, and convenience of batch fabrication. There are many advancements and breakthroughs developing in the academic community, and there are a few challenges raised accordingly upon the designs, structures, fabrication, integration, and applications of MEMS for all kinds of biomedical imaging. This Special Issue aims to collate and showcase research papers, short commutations, perspectives, and insightful review articles from esteemed colleagues that demonstrate: (1) original works on the topic of MEMS components or devices based on various kinds of mechanisms for biomedical imaging; and (2) new developments and potentials of applying MEMS technology of any kind in biomedical imaging. The objective of this special session is to provide insightful information regarding the technological advancements for the researchers in the community

    Electronic/electric technology benefits study

    Get PDF
    The benefits and payoffs of advanced electronic/electric technologies were investigated for three types of aircraft. The technologies, evaluated in each of the three airplanes, included advanced flight controls, advanced secondary power, advanced avionic complements, new cockpit displays, and advanced air traffic control techniques. For the advanced flight controls, the near term considered relaxed static stability (RSS) with mechanical backup. The far term considered an advanced fly by wire system for a longitudinally unstable airplane. In the case of the secondary power systems, trades were made in two steps: in the near term, engine bleed was eliminated; in the far term bleed air, air plus hydraulics were eliminated. Using three commercial aircraft, in the 150, 350, and 700 passenger range, the technology value and pay-offs were quantified, with emphasis on the fiscal benefits. Weight reductions deriving from fuel saving and other system improvements were identified and the weight savings were cycled for their impact on TOGW (takeoff gross weight) and upon the performance of the airframes/engines. Maintenance, reliability, and logistic support were the other criteria
    • …
    corecore