1,115,178 research outputs found
Dynamic Perceptual Changes in Audiovisual Simultaneity
Background: The timing at which sensory input reaches the level of conscious perception is an intriguing question still awaiting an answer. It is often assumed that both visual and auditory percepts have a modality specific processing delay and their difference determines perceptual temporal offset.
Methodology/Principal Findings: Here, we show that the perception of audiovisual simultaneity can change flexibly and fluctuates over a short period of time while subjects observe a constant stimulus. We investigated the mechanisms underlying the spontaneous alternations in this audiovisual illusion and found that attention plays a crucial role. When attention was distracted from the stimulus, the perceptual transitions disappeared. When attention was directed to a visual event, the perceived timing of an auditory event was attracted towards that event.
Conclusions/Significance: This multistable display illustrates how flexible perceived timing can be, and at the same time offers a paradigm to dissociate perceptual from stimulus-driven factors in crossmodal feature binding. Our findings suggest that the perception of crossmodal synchrony depends on perceptual binding of audiovisual stimuli as a common event
Does Time Really Slow Down during a Frightening Event?
Observers commonly report that time seems to have moved in slow motion during a life-threatening event. It is unknown whether this is a function of increased time resolution during the event, or instead an illusion of remembering an emotionally salient event. Using a hand-held device to measure speed of visual perception, participants experienced free fall for 31 m before landing safely in a net. We found no evidence of increased temporal resolution, in apparent conflict with the fact that participants retrospectively estimated their own fall to last 36% longer than others' falls. The duration dilation during a frightening event, and the lack of concomitant increase in temporal resolution, indicate that subjective time is not a single entity that speeds or slows, but instead is composed of separable subcomponents. Our findings suggest that time-slowing is a function of recollection, not perception: 1a richer encoding of memory may cause a salient event to appear, retrospectively, as though it lasted longer
Deep Learning of Human Perception in Audio Event Classification
In this paper, we introduce our recent studies on human perception in audio
event classification by different deep learning models. In particular, the
pre-trained model VGGish is used as feature extractor to process audio data,
and DenseNet is trained by and used as feature extractor for our
electroencephalography (EEG) data. The correlation between audio stimuli and
EEG is learned in a shared space. In the experiments, we record brain
activities (EEG signals) of several subjects while they are listening to music
events of 8 audio categories selected from Google AudioSet, using a 16-channel
EEG headset with active electrodes. Our experimental results demonstrate that
i) audio event classification can be improved by exploiting the power of human
perception, and ii) the correlation between audio stimuli and EEG can be
learned to complement audio event understanding
"Sitting too close to the screen can be bad for your ears": A study of audio-visual location discrepancy detection under different visual projections
In this work, we look at the perception of event locality under conditions of disparate audio and visual cues. We address an aspect of the so called “ventriloquism effect” relevant for multi-media designers; namely, how auditory perception of event locality is influenced by the size and scale of the accompanying visual projection of those events. We observed that recalibration of the visual axes of an audio-visual animation (by resizing and zooming) exerts a recalibrating influence on the auditory space perception. In particular, sensitivity to audio-visual discrepancies (between a centrally located visual stimuli and laterally displaced audio cue) increases near the edge of the screen on which the visual cue is displayed. In other words,discrepancy detection thresholds are not fixed for a particular pair of stimuli, but are influenced by the size of the display space. Moreover, the discrepancy thresholds are influenced by scale as well as size. That is, the boundary of auditory space perception is not rigidly fixed on the boundaries of the screen; it also depends on the spatial relationship depicted. For example,the ventriloquism effect will break down within the boundaries of a large screen if zooming is used to exaggerate the proximity of the audience to the events. The latter effect appears to be much weaker than the former
Perception and control of rotorcraft flight
Three topics which can be applied to rotorcraft flight are examined: (1) the nature of visual information; (2) what visual information is informative about; and (3) the control of visual information. The anchorage of visual perception is defined as the distribution of structure in the surrounding optical array or the distribution of optical structure over the retinal surface. A debate was provoked about whether the referent of visual event perception, and in turn control, is optical motion, kinetics, or dynamics. The interface of control theory and visual perception is also considered. The relationships among these problems is the basis of this article
A semantic event detection approach for soccer video based on perception concepts and finite state machines
A significant application area for automated video analysis technology is the generation of personalized highlights of sports events. Sports games are always composed of a range of significant events. Automatically detecting these events in a sports video can enable users to interactively select their own highlights. In this paper we propose a semantic event detection approach based on Perception Concepts and Finite State Machines to automatically detect significant events within soccer video. Firstly we define a Perception Concept set for soccer videos based on identifiable feature elements within a soccer video. Secondly we design PC-FSM models to describe semantic events in soccer videos. A particular strength of this approach is that users are able to design their own semantic events and transfer event detection into graph matching. Experimental results based on recorded soccer broadcasts are used to illustrate the potential of this approach
- …
