2 research outputs found

    Event detection in Colombian security Twitter news using fine-grained latent topic analysis

    Full text link
    Cultural and social dynamics are important concepts that must be understood in order to grasp what a community cares about. To that end, an excellent source of information on what occurs in a community is the news, especially in recent years, when mass media giants use social networks to communicate and interact with their audience. In this work, we use a method to discover latent topics in tweets from Colombian Twitter news accounts in order to identify the most prominent events in the country. We pay particular attention to security, violence and crime-related tweets because of the violent environment that surrounds Colombian society. The latent topic discovery method that we use builds vector representations of the tweets by using FastText and finds clusters of tweets through the K-means clustering algorithm. The number of clusters is found by measuring the CVC_V coherence for a range of number of topics of the Latent Dirichlet Allocation (LDA) model. We finally use Uniform Manifold Approximation and Projection (UMAP) for dimensionality reduction to visualise the tweets vectors. Once the clusters related to security, violence and crime are identified, we proceed to apply the same method within each cluster to perform a fine-grained analysis in which specific events mentioned in the news are grouped together. Our method is able to discover event-specific sets of news, which is the baseline to perform an extensive analysis of how people engage in Twitter threads on the different types of news, with an emphasis on security, violence and crime-related tweets.Comment: pre-print exposed at CATAI (Bogot\'a, Colombia

    Exploratory Analysis of Covid-19 Tweets using Topic Modeling, UMAP, and DiGraphs

    Full text link
    This paper illustrates five different techniques to assess the distinctiveness of topics, key terms and features, speed of information dissemination, and network behaviors for Covid19 tweets. First, we use pattern matching and second, topic modeling through Latent Dirichlet Allocation (LDA) to generate twenty different topics that discuss case spread, healthcare workers, and personal protective equipment (PPE). One topic specific to U.S. cases would start to uptick immediately after live White House Coronavirus Task Force briefings, implying that many Twitter users are paying attention to government announcements. We contribute machine learning methods not previously reported in the Covid19 Twitter literature. This includes our third method, Uniform Manifold Approximation and Projection (UMAP), that identifies unique clustering-behavior of distinct topics to improve our understanding of important themes in the corpus and help assess the quality of generated topics. Fourth, we calculated retweeting times to understand how fast information about Covid19 propagates on Twitter. Our analysis indicates that the median retweeting time of Covid19 for a sample corpus in March 2020 was 2.87 hours, approximately 50 minutes faster than repostings from Chinese social media about H7N9 in March 2013. Lastly, we sought to understand retweet cascades, by visualizing the connections of users over time from fast to slow retweeting. As the time to retweet increases, the density of connections also increase where in our sample, we found distinct users dominating the attention of Covid19 retweeters. One of the simplest highlights of this analysis is that early-stage descriptive methods like regular expressions can successfully identify high-level themes which were consistently verified as important through every subsequent analysis
    corecore