9,331 research outputs found

    Survey on Vision-based Path Prediction

    Full text link
    Path prediction is a fundamental task for estimating how pedestrians or vehicles are going to move in a scene. Because path prediction as a task of computer vision uses video as input, various information used for prediction, such as the environment surrounding the target and the internal state of the target, need to be estimated from the video in addition to predicting paths. Many prediction approaches that include understanding the environment and the internal state have been proposed. In this survey, we systematically summarize methods of path prediction that take video as input and and extract features from the video. Moreover, we introduce datasets used to evaluate path prediction methods quantitatively.Comment: DAPI 201

    A Neural System for Automated CCTV Surveillance

    Get PDF
    This paper overviews a new system, the “Owens Tracker,” for automated identification of suspicious pedestrian activity in a car-park. Centralized CCTV systems relay multiple video streams to a central point for monitoring by an operator. The operator receives a continuous stream of information, mostly related to normal activity, making it difficult to maintain concentration at a sufficiently high level. While it is difficult to place quantitative boundaries on the number of scenes and time period over which effective monitoring can be performed, Wallace and Diffley [1] give some guidance, based on empirical and anecdotal evidence, suggesting that the number of cameras monitored by an operator be no greater than 16, and that the period of effective monitoring may be as low as 30 minutes before recuperation is required. An intelligent video surveillance system should therefore act as a filter, censuring inactive scenes and scenes showing normal activity. By presenting the operator only with unusual activity his/her attention is effectively focussed, and the ratio of cameras to operators can be increased. The Owens Tracker learns to recognize environmentspecific normal behaviour, and refers sequences of unusual behaviour for operator attention. The system was developed using standard low-resolution CCTV cameras operating in the car-parks of Doxford Park Industrial Estate (Sunderland, Tyne and Wear), and targets unusual pedestrian behaviour. The modus operandi of the system is to highlight excursions from a learned model of normal behaviour in the monitored scene. The system tracks objects and extracts their centroids; behaviour is defined as the trajectory traced by an object centroid; normality as the trajectories typically encountered in the scene. The essential stages in the system are: segmentation of objects of interest; disambiguation and tracking of multiple contacts, including the handling of occlusion and noise, and successful tracking of objects that “merge” during motion; identification of unusual trajectories. These three stages are discussed in more detail in the following sections, and the system performance is then evaluated

    A system for learning statistical motion patterns

    Get PDF
    Analysis of motion patterns is an effective approach for anomaly detection and behavior prediction. Current approaches for the analysis of motion patterns depend on known scenes, where objects move in predefined ways. It is highly desirable to automatically construct object motion patterns which reflect the knowledge of the scene. In this paper, we present a system for automatically learning motion patterns for anomaly detection and behavior prediction based on a proposed algorithm for robustly tracking multiple objects. In the tracking algorithm, foreground pixels are clustered using a fast accurate fuzzy k-means algorithm. Growing and prediction of the cluster centroids of foreground pixels ensure that each cluster centroid is associated with a moving object in the scene. In the algorithm for learning motion patterns, trajectories are clustered hierarchically using spatial and temporal information and then each motion pattern is represented with a chain of Gaussian distributions. Based on the learned statistical motion patterns, statistical methods are used to detect anomalies and predict behaviors. Our system is tested using image sequences acquired, respectively, from a crowded real traffic scene and a model traffic scene. Experimental results show the robustness of the tracking algorithm, the efficiency of the algorithm for learning motion patterns, and the encouraging performance of algorithms for anomaly detection and behavior prediction

    A system for learning statistical motion patterns

    Get PDF
    Analysis of motion patterns is an effective approach for anomaly detection and behavior prediction. Current approaches for the analysis of motion patterns depend on known scenes, where objects move in predefined ways. It is highly desirable to automatically construct object motion patterns which reflect the knowledge of the scene. In this paper, we present a system for automatically learning motion patterns for anomaly detection and behavior prediction based on a proposed algorithm for robustly tracking multiple objects. In the tracking algorithm, foreground pixels are clustered using a fast accurate fuzzy k-means algorithm. Growing and prediction of the cluster centroids of foreground pixels ensure that each cluster centroid is associated with a moving object in the scene. In the algorithm for learning motion patterns, trajectories are clustered hierarchically using spatial and temporal information and then each motion pattern is represented with a chain of Gaussian distributions. Based on the learned statistical motion patterns, statistical methods are used to detect anomalies and predict behaviors. Our system is tested using image sequences acquired, respectively, from a crowded real traffic scene and a model traffic scene. Experimental results show the robustness of the tracking algorithm, the efficiency of the algorithm for learning motion patterns, and the encouraging performance of algorithms for anomaly detection and behavior prediction
    • …
    corecore