1,414,096 research outputs found

    Event by Event fluctuations and Inclusive Distribution

    Get PDF
    Event-by-event observables are compared with conventional inclusive measurements. We find that moments of event-by-event fluctuations are closely related to inclusive correlation functions. Implications for upcomming heavy ion experiments are discussed.Comment: Several typos corrected, conclusions unchange

    The effect of the fluctuating proton size on the study of chiral magnetic effect in proton-nucleus collisions

    Full text link
    High energy proton-nucleus (pA) collisions provide an important constraint on the study of the chiral magnetic effect in QCD matter. Naively, in pA collisions one expects no correlation between the orientation of event plane as reconstructed from the azimuthal distribution of produced hadrons and the orientation of magnetic field. If this is the case, any charge-dependent hadron correlations can only result from the background. Nevertheless, in this paper we point out that in high multiplicity pA collisions a correlation between the magnetic field and the event plane can appear. This is because triggering on the high hadron multiplicity amounts to selecting Fock components of the incident proton with a large number of partons that are expected to have a transverse size much larger than the average proton size. We introduce the effect of the fluctuating proton size in the Monte Carlo Glauber model and evaluate the resulting correlation between the magnetic field and the second-order event plane in both pA and nucleus-nucleus (AA) collisions. The fluctuating proton size is found to result in a significant correlation between magnetic field and the event plane in pA collisions, even though the magnitude of the correlation is still much smaller than in AA collisions. This result opens a possibility of studying the chiral magnetic effect in small systems.Comment: 14 pages, 6 figure

    A Study of the Di-Hadron Angular Correlation Function in Event by Event Ideal Hydrodynamics

    Full text link
    The di-hadron angular correlation function is computed within boost invariant, ideal hydrodynamics for Au+Au collisions at sNN=200\sqrt{s}_{NN}=200 GeV using Monte Carlo Glauber fluctuating initial conditions. When 0<pT<30<p_T< 3 GeV, the intensity of the flow components and their phases, {vn,Ψn}\left\{v_n, \Psi_n \right \} (n=2,3n=2,3), are found to be correlated on an event by event basis to the initial condition geometrical parameters {ε2,n,Φ2,n}\left\{\varepsilon_{2,n}, \Phi_{2,n} \right \}, respectively. Moreover, the fluctuation of the relative phase between trigger and associated particles, Δn=ΨntΨna\Delta_n =\Psi_n^t - \Psi_n^a, is found to affect the di-hadron angular correlation function when different intervals of transverse momentum are used to define the trigger and the associated hadrons.Comment: 15 pages, 10 figures; typos fixed, added reference

    Towards Streaming Evaluation of Queries with Correlation in Complex Event Processing

    Get PDF
    Complex event processing (CEP) has gained a lot of attention for evaluating complex patterns over high-throughput data streams. Recently, new algorithms for the evaluation of CEP patterns have emerged with strong guarantees of efficiency, i.e. constant update-time per tuple and constant-delay enumeration. Unfortunately, these techniques are restricted for patterns with local filters, limiting the possibility of using joins for correlating the data of events that are far apart. In this paper, we embark on the search for efficient evaluation algorithms of CEP patterns with joins. We start by formalizing the so-called partition-by operator, a standard operator in data stream management systems to correlate contiguous events on streams. Although this operator is a restricted version of a join query, we show that partition-by (without iteration) is equally expressive as hierarchical queries, the biggest class of full conjunctive queries that can be evaluated with constant update-time and constant-delay enumeration over streams. To evaluate queries with partition-by we introduce an automata model, called chain complex event automata (chain-CEA), an extension of complex event automata that can compare data values by using equalities and disequalities. We show that this model admits determinization and is expressive enough to capture queries with partition-by. More importantly, we provide an algorithm with constant update time and constant delay enumeration for evaluating any query definable by chain-CEA, showing that all CEP queries with partition-by can be evaluated with these strong guarantees of efficiency

    Probing the Color Structure of the Perfect QCD Fluids via Soft-Hard-Event-by-Event Azimuthal Correlations

    Full text link
    We develop a comprehensive dynamical framework, CIBJET, to calculate on an event-by-event basis the dependence of correlations between soft (pT<2p_T<2 Gev) and hard (pT>10p_T> 10 Gev) azimuthal flow angle harmonics on the color composition of near-perfect QCD fluids produced in high energy nuclear collisions at RHIC and LHC. CIBJET combines consistently predictions of event-by-event VISHNU2+1 viscous hydrodynamic fluid fields with CUJET3.1 predictions of event-by-event jet quenching. We find that recent correlation data favor a temperature dependent color composition including bleached chromo-electric q(T)+g(T)q(T)+g(T) components and an emergent chromo-magnetic degrees of freedom m(T)m(T) consistent with non-perturbative lattice QCD information in the confinement/deconfinement temperature range.Comment: 6 pages, 6 figures; Accepted version to appear in Chinese Physics

    Aging in coherent noise models and natural time

    Full text link
    Event correlation between aftershocks in the coherent noise model is studied by making use of natural time, which has recently been introduced in complex time-series analysis. It is found that the aging phenomenon and the associated scaling property discovered in the observed seismic data are well reproduced by the model. It is also found that the scaling function is given by the qq-exponential function appearing in nonextensive statistical mechanics, showing power-law decay of event correlation in natural time.Comment: 4 pages and 5 figure
    corecore