79,083 research outputs found

    Collisional Formation and Modeling of Asteroid Families

    Full text link
    In the last decade, thanks to the development of sophisticated numerical codes, major breakthroughs have been achieved in our understanding of the formation of asteroid families by catastrophic disruption of large parent bodies. In this review, we describe numerical simulations of asteroid collisions that reproduced the main properties of families, accounting for both the fragmentation of an asteroid at the time of impact and the subsequent gravitational interactions of the generated fragments. The simulations demonstrate that the catastrophic disruption of bodies larger than a few hundred meters in diameter leads to the formation of large aggregates due to gravitational reaccumulation of smaller fragments, which helps explain the presence of large members within asteroid families. Thus, for the first time, numerical simulations successfully reproduced the sizes and ejection velocities of members of representative families. Moreover, the simulations provide constraints on the family dynamical histories and on the possible internal structure of family members and their parent bodies.Comment: Chapter to appear in the (University of Arizona Press) Space Science Series Book: Asteroids I

    Modeling asteroid collisions and impact processes

    Full text link
    As a complement to experimental and theoretical approaches, numerical modeling has become an important component to study asteroid collisions and impact processes. In the last decade, there have been significant advances in both computational resources and numerical methods. We discuss the present state-of-the-art numerical methods and material models used in "shock physics codes" to simulate impacts and collisions and give some examples of those codes. Finally, recent modeling studies are presented, focussing on the effects of various material properties and target structures on the outcome of a collision.Comment: Chapter to appear in the Space Science Series Book: Asteroids IV. Includes minor correction

    Tidal streams from axion miniclusters and direct axion searches

    Full text link
    In some axion dark matter models a dominant fraction of axions resides in dense small-scale substructures, axion miniclusters. A fraction of these substructures is disrupted and forms tidal streams where the axion density may still be an order of magnitude larger than the average. We discuss implications of these streams for the direct axion searches. We estimate the fraction of disrupted miniclusters and the parameters of the resulting streams, and find that stream-crossing events would occur at a rate of about 1/(20yr)1/(20 {\rm yr}) for 2-3 days, during which the signal in axion detectors would be amplified by a factor ∼10\sim 10. These estimates suggest that the effect of the tidal disruption of axion miniclusters may be important for direct axion searches and deserves a more thorough study.Comment: Replaced with the version accepted for publication in JCA

    Sumo Puff: Tidal Debris or Disturbed Ultra-Diffuse Galaxy?

    Full text link
    We report the discovery of a diffuse stellar cloud with an angular extent ≳30′′\gtrsim30^{\prime\prime}, which we term "Sumo Puff", in data from the Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP). While we do not have a redshift for this object, it is in close angular proximity to a post-merger galaxy at redshift z=0.0431z=0.0431 and is projected within a few virial radii (assuming similar redshifts) of two other ∼L⋆{\sim}L_\star galaxies, which we use to bracket a potential redshift range of 0.0055<z<0.04310.0055 < z < 0.0431. The object's light distribution is flat, as characterized by a low Sersic index (n∼0.3n\sim0.3). It has a low central gg-band surface brightness of ∼26.4{\sim}26.4 mag arcsec−2^{-2}, large effective radius of ∼13′′{\sim}13^{\prime\prime} (∼11{\sim}11 kpc at z=0.0431z=0.0431 and ∼1.5{\sim}1.5 kpc at z=0.0055z=0.0055), and an elongated morphology (b/a∼0.4b/a\sim0.4). Its red color (g−i∼1g-i\sim1) is consistent with a passively evolving stellar population and similar to the nearby post-merger galaxy, and we may see tidal material connecting Sumo Puff with this galaxy. We offer two possible interpretations for the nature of this object: (1) it is an extreme, galaxy-size tidal feature associated with a recent merger event, or (2) it is a foreground dwarf galaxy with properties consistent with a quenched, disturbed ultra-diffuse galaxy. We present a qualitative comparison with simulations that demonstrates the feasibility of forming a structure similar to this object in a merger event. Follow-up spectroscopy and/or deeper imaging to confirm the presence of the bridge of tidal material will be necessary to reveal the true nature of this object.Comment: 10 pages, 5 figures, submitted to PASJ for the HSC-SSP special issu

    Ripple oscillations in the left temporal neocortex are associated with impaired verbal episodic memory encoding

    Full text link
    Background: We sought to determine if ripple oscillations (80-120Hz), detected in intracranial EEG (iEEG) recordings of epilepsy patients, correlate with an enhancement or disruption of verbal episodic memory encoding. Methods: We defined ripple and spike events in depth iEEG recordings during list learning in 107 patients with focal epilepsy. We used logistic regression models (LRMs) to investigate the relationship between the occurrence of ripple and spike events during word presentation and the odds of successful word recall following a distractor epoch, and included the seizure onset zone (SOZ) as a covariate in the LRMs. Results: We detected events during 58,312 word presentation trials from 7,630 unique electrode sites. The probability of ripple on spike (RonS) events was increased in the seizure onset zone (SOZ, p<0.04). In the left temporal neocortex RonS events during word presentation corresponded with a decrease in the odds ratio (OR) of successful recall, however this effect only met significance in the SOZ (OR of word recall 0.71, 95% CI: 0.59-0.85, n=158 events, adaptive Hochberg p<0.01). Ripple on oscillation events (RonO) that occurred in the left temporal neocortex non-SOZ also correlated with decreased odds of successful recall (OR 0.52, 95% CI: 0.34-0.80, n=140, adaptive Hochberg , p<0.01). Spikes and RonS that occurred during word presentation in the left middle temporal gyrus during word presentation correlated with the most significant decrease in the odds of successful recall, irrespective of the location of the SOZ (adaptive Hochberg, p<0.01). Conclusion: Ripples and spikes generated in left temporal neocortex are associated with impaired verbal episodic memory encoding
    • …
    corecore