1,170,525 research outputs found

    Economic event detection in company-specific news text

    Get PDF
    This paper presents a dataset and supervised classification approach for economic event detection in English news articles. Currently, the economic domain is lacking resources and methods for data-driven supervised event detection. The detection task is conceived as a sentence-level classification task for 10 different economic event types. Two different machine learning approaches were tested: a rich feature set Support Vector Machine (SVM) set-up and a word-vector-based long short-term memory recurrent neural network (RNN-LSTM) set-up. We show satisfactory results for most event types, with the linear kernel SVM outperforming the other experimental set-ups

    Italian Event Detection Goes Deep Learning

    Get PDF
    This paper reports on a set of experiments with different word embeddings to initialize a state-of-the-art Bi-LSTM-CRF network for event detection and classification in Italian, following the EVENTI evaluation exercise. The net- work obtains a new state-of-the-art result by improving the F1 score for detection of 1.3 points, and of 6.5 points for classification, by using a single step approach. The results also provide further evidence that embeddings have a major impact on the performance of such architectures.Comment: to appear at CLiC-it 201

    Modelling of Sound Events with Hidden Imbalances Based on Clustering and Separate Sub-Dictionary Learning

    Full text link
    This paper proposes an effective modelling of sound event spectra with a hidden data-size-imbalance, for improved Acoustic Event Detection (AED). The proposed method models each event as an aggregated representation of a few latent factors, while conventional approaches try to find acoustic elements directly from the event spectra. In the method, all the latent factors across all events are assigned comparable importance and complexity to overcome the hidden imbalance of data-sizes in event spectra. To extract latent factors in each event, the proposed method employs clustering and performs non-negative matrix factorization to each latent factor, and learns its acoustic elements as a sub-dictionary. Separate sub-dictionary learning effectively models the acoustic elements with limited data-sizes and avoids over-fitting due to hidden imbalances in training data. For the task of polyphonic sound event detection from DCASE 2013 challenge, an AED based on the proposed modelling achieves a detection F-measure of 46.5%, a significant improvement of more than 19% as compared to the existing state-of-the-art methods
    • …
    corecore