1,170,525 research outputs found
Economic event detection in company-specific news text
This paper presents a dataset and supervised classification approach for economic event detection in English news articles. Currently, the economic domain is lacking resources and methods for data-driven supervised event detection. The detection task is conceived as a sentence-level classification task for 10 different economic event types. Two different machine learning approaches were tested: a rich feature set Support Vector Machine (SVM) set-up and a word-vector-based long short-term memory recurrent neural network (RNN-LSTM) set-up. We show satisfactory results for most event types, with the linear kernel SVM outperforming the other experimental set-ups
Italian Event Detection Goes Deep Learning
This paper reports on a set of experiments with different word embeddings to
initialize a state-of-the-art Bi-LSTM-CRF network for event detection and
classification in Italian, following the EVENTI evaluation exercise. The net-
work obtains a new state-of-the-art result by improving the F1 score for
detection of 1.3 points, and of 6.5 points for classification, by using a
single step approach. The results also provide further evidence that embeddings
have a major impact on the performance of such architectures.Comment: to appear at CLiC-it 201
Modelling of Sound Events with Hidden Imbalances Based on Clustering and Separate Sub-Dictionary Learning
This paper proposes an effective modelling of sound event spectra with a
hidden data-size-imbalance, for improved Acoustic Event Detection (AED). The
proposed method models each event as an aggregated representation of a few
latent factors, while conventional approaches try to find acoustic elements
directly from the event spectra. In the method, all the latent factors across
all events are assigned comparable importance and complexity to overcome the
hidden imbalance of data-sizes in event spectra. To extract latent factors in
each event, the proposed method employs clustering and performs non-negative
matrix factorization to each latent factor, and learns its acoustic elements as
a sub-dictionary. Separate sub-dictionary learning effectively models the
acoustic elements with limited data-sizes and avoids over-fitting due to hidden
imbalances in training data. For the task of polyphonic sound event detection
from DCASE 2013 challenge, an AED based on the proposed modelling achieves a
detection F-measure of 46.5%, a significant improvement of more than 19% as
compared to the existing state-of-the-art methods
- …
