986 research outputs found

    Study of a high performance evaporative heat transfer surface

    Get PDF
    An evaporative surface is described for heat pipes and other two-phase heat transfer applications that consists of a hybrid composition of V-grooves and capillary wicking. Characteristics of the surface include both a high heat transfer coefficient and high heat flux capability relative to conventional open-faced screw thread surfaces. With a groove density of 12.6 cm/1 and ammonia working fluid, heat transfer coefficients in the range of 1 to 2 W/sq cm have been measured along with maximum heat flux densities in excess of 20 W/sq cm. A peak heat transfer coefficient in excess of 2.3 W/sq cm was measured with a 37.8 cm/1 hybrid surface

    Heat pipe investigations

    Get PDF
    Techniques associated with thermal-vacuum and bench testing, along with flight testing of the OAO-C spacecraft heat pipes are outlined, to show that the processes used in heat transfer design and testing are adequate for good performance evaluations

    High capacity demonstration of honeycomb panel heat pipes

    Get PDF
    The feasibility of performance enhancing the sandwich panel heat pipe was investigated for moderate temperature range heat rejection radiators on future-high-power spacecraft. The hardware development program consisted of performance prediction modeling, fabrication, ground test, and data correlation. Using available sandwich panel materials, a series of subscale test panels were augumented with high-capacity sideflow and temperature control variable conductance features, and test evaluated for correlation with performance prediction codes. Using the correlated prediction model, a 50-kW full size radiator was defined using methanol working fluid and closely spaced sideflows. A new concept called the hybrid radiator individually optimizes heat pipe components. A 2.44-m long hybrid test vehicle demonstrated proof-of-principle performance

    Physical sciences: Thermodynamics, cryogenics, and vacuum technology: A compilation

    Get PDF
    Technological developments which have potential application outside the aerospace community are reported. A variety of thermodynamic devices including heat pipes and cooling systems are described along with methods of handling cryogenic fluids. Vacuum devices are also described. Pata et information is included

    Effect of curing conditions and harvesting stage of maturity on Ethiopian onion bulb drying properties

    Get PDF
    The study was conducted to investigate the impact of curing conditions and harvesting stageson the drying quality of onion bulbs. The onion bulbs (Bombay Red cultivar) were harvested at three harvesting stages (early, optimum, and late maturity) and cured at three different temperatures (30, 40 and 50 oC) and relative humidity (30, 50 and 70%). The results revealed that curing temperature, RH, and maturity stage had significant effects on all measuredattributesexcept total soluble solids

    Flight data analysis and further development of variable-conductance heat pipes

    Get PDF
    Continuing efforts in large gains in heat-pipe performance are reported. It was found that gas-controlled variable-conductance heat pipes can perform reliably for long periods in space and effectively provide temperature stabilization for spacecraft electronics. A solution was formulated that allows the control gas to vent through arterial heat-pipe walls, thus eliminating the problem of arterial failure under load, due to trace impurities of noncondensable gas trapped in an arterial bubble during priming. This solution functions well in zero gravity. Another solution was found that allows priming at a much lower fluid charge. A heat pipe with high capacity, with close temperature control of the heat source and independent of large variations in sink temperature was fabricated

    A literature study on heat pipes: ways to reach optimal performance

    Get PDF

    Experimental study on pool boiling in a porous artery structure

    Get PDF
    In this work, a porous artery structure is proposed to enhance the critical heat flux (CHF) of pool boiling based on the concept of “phase separation and modulation” and extensive experimental studies have been carried out for validation. In the experiment, multiple rectangular arteries were machined directly into the top surface of a copper rod to provide individual flow paths for vapor escaping. The arteries were covered by a microporous copper plate where capillary forces can be developed at the liquid/vapor interface to prevent the vapor from penetrating the porous structure and realize strong liquid suction simultaneously. The pool wall was made of transparent quartz glass to enable a visualization study where the liquid/vapor distribution and movement can be observed directly. Favorable results have been reached as expected, and a maximum heat flux up to 805 W/cm2 was achieved with no indication of any dry-out, which successfully validated this new concept. In addition, the effects of the diameter and thickness of the porous copper plate, and the connection method between the porous copper plate and copper fin on the pool boiling heat transfer in the porous artery structure were investigated, and the inherent physical mechanisms were analyzed and discussed

    A literature study on heat pipes: ways to reach optimal performance

    Get PDF

    Multiscale Mechanistic Approach to Enhance Pool Boiling Performance for High Heat Flux Applications

    Get PDF
    The advent of cloud computing and the complex packaging architecture of next generation electronic devices drives methods for advanced thermal management solutions. Convection based single-phase cooling systems are inefficient due to their large pressure drops, fluid temperature differences and costs, and are incapable of meeting the cooling requirements in the high power density components and systems. Alternatively, phase-change cooling techniques are attractive due to their ability to remove large amounts of heat while maintaining uniform fluid temperatures. Pool boiling heat transfer mechanism centers on the nucleation, growth and departure of a bubble from the heat transfer surface in a stagnant pool of liquid. The pool boiling performance is quantified by the Critical Heat Flux (CHF) and Heat Transfer Coefficients (HTC) which dictate the operating ranges and efficiency of the heat transfer process. In this work, three novel geometries are introduced to modify the nucleation characteristics, liquid pathways and contact line motion on the prime heater surface for a simultaneous increase in CHF and HTC. First, sintered microchannels and nucleating region with feeder channels (NRFC) were developed through the mechanistic concept of separate liquid-vapor pathways and enhanced macroconvection heat transfer. A maximum CHF of 420 W/cm2 at a wall superheat of 1.7 °C with a HTC of 2900 MW/m2°C was achieved with the sintered-channels configuration, while the NRFC reached a CHF of 394 W/cm2 with a HTC of 713 kW/m2°C. Second, the scale effect of liquid wettability, roughness and microlayer evaporation was exploited to facilitate capillary wicking in graphene through interlaced porous copper particles. A CHF of 220 W/cm2 with a HTC of 155 kW/m2°C was achieved using an electrodeposition coating technique. Third, the chemical heterogeneity on nanoscale coatings was shown to increase the contribution from transient conduction mechanisms. A maximum CHF of 226 W/cm2 with a HTC of 107 kW/m2°C was achieved. The enhancement techniques developed here provide a mechanistic tool at the microscale and nanoscale to increase the boiling CHF and HTC
    corecore