4,147 research outputs found

    Automatic Estimation of Intelligibility Measure for Consonants in Speech

    Full text link
    In this article, we provide a model to estimate a real-valued measure of the intelligibility of individual speech segments. We trained regression models based on Convolutional Neural Networks (CNN) for stop consonants \textipa{/p,t,k,b,d,g/} associated with vowel \textipa{/A/}, to estimate the corresponding Signal to Noise Ratio (SNR) at which the Consonant-Vowel (CV) sound becomes intelligible for Normal Hearing (NH) ears. The intelligibility measure for each sound is called SNR90_{90}, and is defined to be the SNR level at which human participants are able to recognize the consonant at least 90\% correctly, on average, as determined in prior experiments with NH subjects. Performance of the CNN is compared to a baseline prediction based on automatic speech recognition (ASR), specifically, a constant offset subtracted from the SNR at which the ASR becomes capable of correctly labeling the consonant. Compared to baseline, our models were able to accurately estimate the SNR90_{90}~intelligibility measure with less than 2 [dB2^2] Mean Squared Error (MSE) on average, while the baseline ASR-defined measure computes SNR90_{90}~with a variance of 5.2 to 26.6 [dB2^2], depending on the consonant.Comment: 5 pages, 1 figure, 7 tables, submitted to Inter Speech 2020 Conferenc

    Electroacoustic and Behavioural Evaluation of Hearing Aid Digital Signal Processing Features

    Get PDF
    Modern digital hearing aids provide an array of features to improve the user listening experience. As the features become more advanced and interdependent, it becomes increasingly necessary to develop accurate and cost-effective methods to evaluate their performance. Subjective experiments are an accurate method to determine hearing aid performance but they come with a high monetary and time cost. Four studies that develop and evaluate electroacoustic hearing aid feature evaluation techniques are presented. The first study applies a recent speech quality metric to two bilateral wireless hearing aids with various features enabled in a variety of environmental conditions. The study shows that accurate speech quality predictions are made with a reduced version of the original metric, and that a portion of the original metric does not perform well when applied to a novel subjective speech quality rating database. The second study presents a reference free (non-intrusive) electroacoustic speech quality metric developed specifically for hearing aid applications and compares its performance to a recent intrusive metric. The non-intrusive metric offers the advantage of eliminating the need for a shaped reference signal and can be used in real time applications but requires a sacrifice in prediction accuracy. The third study investigates the digital noise reduction performance of seven recent hearing aid models. An electroacoustic measurement system is presented that allows the noise and speech signals to be separated from hearing aid recordings. It is shown how this can be used to investigate digital noise reduction performance through the application of speech quality and speech intelligibility measures. It is also shown how the system can be used to quantify digital noise reduction attack times. The fourth study presents a turntable-based system to investigate hearing aid directionality performance. Two methods to extract the signal of interest are described. Polar plots are presented for a number of hearing aid models from recordings generated in both the free-field and from a head-and-torso simulator. It is expected that the proposed electroacoustic techniques will assist Audiologists and hearing researchers in choosing, benchmarking, and fine-tuning hearing aid features

    Learning-Based Reference-Free Speech Quality Assessment for Normal Hearing and Hearing Impaired Applications

    Get PDF
    Accurate speech quality measures are highly attractive and beneficial in the design, fine-tuning, and benchmarking of speech processing algorithms, devices, and communication systems. Switching from narrowband telecommunication to wideband telephony is a change within the telecommunication industry which provides users with better speech quality experience but introduces a number of challenges in speech processing. Noise is the most common distortion on audio signals and as a result there have been a lot of studies on developing high performance noise reduction algorithms. Assistive hearing devices are designed to decrease communication difficulties for people with loss of hearing. As the algorithms within these devices become more advanced, it becomes increasingly crucial to develop accurate and robust quality metrics to assess their performance. Objective speech quality measurements are more attractive compared to subjective assessments as they are cost-effective and subjective variability is eliminated. Although there has been extensive research on objective speech quality evaluation for narrowband speech, those methods are unsuitable for wideband telephony. In the case of hearing-impaired applications, objective quality assessment is challenging as it has to be capable of distinguishing between desired modifications which make signals audible and undesired artifacts. In this thesis a model is proposed that allows extracting two sets of features from the distorted signal only. This approach which is called reference-free (nonintrusive) assessment is attractive as it does not need access to the reference signal. Although this benefit makes nonintrusive assessments suitable for real-time applications, more features need to be extracted and smartly combined to provide comparable accuracy as intrusive metrics. Two feature vectors are proposed to extract information from distorted signals and their performance is examined in three studies. In the first study, both feature vectors are trained on various portions of a noise reduction database for normal hearing applications. In the second study, the same investigation is performed on two sets of databases acquired through several hearing aids. Third study examined the generalizability of the proposed metrics on benchmarking four wireless remote microphones in a variety of environmental conditions. Machine learning techniques are deployed for training the models in the three studies. The studies show that one of the feature sets is robust when trained on different portions of the data from different databases and it also provides good quality prediction accuracy for both normal hearing and hearing-impaired applications

    Evaluation of the sparse coding shrinkage noise reduction algorithm for the hearing impaired

    No full text
    Although there are numerous single-channel noise reduction strategies to improve speech perception in a noisy environment, most of them can only improve speech quality but not improve speech intelligibility for normal hearing (NH) or hearing impaired (HI) listeners. Exceptions that can improve speech intelligibility currently are only those that require a priori statistics of speech or noise. Most of the noise reduction algorithms in hearing aids are adopted directly from the algorithms for NH listeners without taking into account of the hearing loss factors within HI listeners. HI listeners suffer more in speech intelligibility than NH listeners in the same noisy environment. Further study of monaural noise reduction algorithms for HI listeners is required.The motivation is to adapt a model-based approach in contrast to the conventional Wiener filtering approach. The model-based algorithm called sparse coding shrinkage (SCS) was proposed to extract key speech information from noisy speech. The SCS algorithm was evaluated by comparison with another state-of-the-art Wiener filtering approach through speech intelligibility and quality tests using 9 NH and 9 HI listeners. The SCS algorithm matched the performance of the Wiener filtering algorithm in speech intelligibility and speech quality. Both algorithms showed some intelligibility improvements for HI listeners but not at all for NH listeners. The algorithms improved speech quality for both HI and NH listeners.Additionally, a physiologically-inspired hearing loss simulation (HLS) model was developed to characterize hearing loss factors and simulate hearing loss consequences. A methodology was proposed to evaluate signal processing strategies for HI listeners with the proposed HLS model and NH subjects. The corresponding experiment was performed by asking NH subjects to listen to unprocessed/enhanced speech with the HLS model. Some of the effects of the algorithms seen in HI listeners are reproduced, at least qualitatively, by using the HLS model with NH listeners.Conclusions: The model-based algorithm SCS is promising for improving performance in stationary noise although no clear difference was seen in the performance of SCS and a competitive Wiener filtering algorithm. Fluctuating noise is more difficult to reduce compared to stationary noise. Noise reduction algorithms may perform better at higher input signal-to-noise ratios (SNRs) where HI listeners can get benefit but where NH listeners already reach ceiling performance. The proposed HLS model can save time and cost when evaluating noise reduction algorithms for HI listeners

    A Computation Efficient Voice Activity Detector for Low Signal-to-Noise Ratio in Hearing Aids

    Get PDF
    This paper proposes a spectral entropy-based voice activity detection method, which is computationally efficient for hearing aids. The method is highly accurate at low SNR levels by using the spectral entropy which is more robust against changes of the noise power. Compared with the traditional fast Fourier transform based spectral entropy approaches, the proposed method of calculating the spectral entropy using the outputs of a hearing aid filter-bank significantly reduces the computational complexity. The performance of the proposed method was evaluated and compared with two other computationally efficient methods. At negative SNR levels, the proposed method has an accuracy of more than 5% higher than the power-based method with the number of floating-point operations only about 1/100 of that of the statistical model based method

    Modified Multiple Stimulus With Hidden Reference and Anchors–Gabrielsson Total Impression Sound Quality Rating Comparisons for Speech in Quiet, Noise, and Reverberation

    Get PDF
    Purpose: The purpose of the study was to obtain, analyze, and compare subjective sound quality data for the same test stimuli using modified multistimulus MUSHRA (Multiple Stimulus with Hidden Reference and Anchors) based procedures (viz., MUSHRA with custom anchors and MUSHRA without anchor) and the single-stimulus Gabrielsson\u27s total impression rating procedure. Method: Twenty normally hearing young adults were recruited in this study. Participants completed sound quality ratings on two different hearing aid recording data sets—Data Set A contained speech recordings from four different hearing aids under a variety of noisy and processing conditions, and Data Set B contained speech recordings from a single hearing aid under a combination of different noisy, reverberant, and signal processing conditions. Recordings in both data sets were rated for their quality using the total impression rating procedure. In addition, quality ratings of Data Set A recordings were obtained using a MUSHRA with custom anchors, while the ratings of Data Set B recordings were collected using a MUSHRA without anchor. Results: Statistical analyses revealed a high test–retest reliability of quality ratings for the same stimuli that were rated multiple times. In addition, high-interrater reliability was observed with all three rating procedures. Further analyses indicated (a) a high correlation between the total impression rating and the two modified MUSHRA ratings and (b) a similar relationship between the average and standard deviation of the subjective rating data obtained by the total impression rating and MUSHRA with custom anchors on Data Set A, and the total impression rating and the MUSHRA without anchor on Data Set B. Conclusion: Both sound quality procedures, namely, the MUSHRA-based procedures and the total impression rating scale, obtained similar quality ratings of varied hearing aid speech recordings with high reliability

    Methods of Optimizing Speech Enhancement for Hearing Applications

    Get PDF
    Speech intelligibility in hearing applications suffers from background noise. One of the most effective solutions is to develop speech enhancement algorithms based on the biological traits of the auditory system. In humans, the medial olivocochlear (MOC) reflex, which is an auditory neural feedback loop, increases signal-in-noise detection by suppressing cochlear response to noise. The time constant is one of the key attributes of the MOC reflex as it regulates the variation of suppression over time. Different time constants have been measured in nonhuman mammalian and human auditory systems. Physiological studies reported that the time constant of nonhuman mammalian MOC reflex varies with the properties (e.g. frequency, bandwidth) changes of the stimulation. A human based study suggests that time constant could vary when the bandwidth of the noise is changed. Previous works have developed MOC reflex models and successfully demonstrated the benefits of simulating the MOC reflex for speech-in-noise recognition. However, they often used fixed time constants. The effect of the different time constants on speech perception remains unclear. The main objectives of the present study are (1) to study the effect of the MOC reflex time constant on speech perception in different noise conditions; (2) to develop a speech enhancement algorithm with dynamic time constant optimization to adapt to varying noise conditions for improving speech intelligibility. The first part of this thesis studies the effect of the MOC reflex time constants on speech-in-noise perception. Conventional studies do not consider the relationship between the time constants and speech perception as it is difficult to measure the speech intelligibility changes due to varying time constants in human subjects. We use a model to investigate the relationship by incorporating Meddis’ peripheral auditory model (which includes a MOC reflex) with an automatic speech recognition (ASR) system. The effect of the MOC reflex time constant is studied by adjusting the time constant parameter of the model and testing the speech recognition accuracy of the ASR. Different time constants derived from human data are evaluated in both speech-like and non-speech like noise at the SNR levels from -10 dB to 20 dB and clean speech condition. The results show that the long time constants (≥1000 ms) provide a greater improvement of speech recognition accuracy at SNR levels≤10 dB. Maximum accuracy improvement of 40% (compared to no MOC condition) is shown in pink noise at the SNR of 10 dB. Short time constants (<1000 ms) show recognition accuracy over 5% higher than the longer ones at SNR levels ≥15 dB. The second part of the thesis develops a novel speech enhancement algorithm based on the MOC reflex with a time constant that is dynamically optimized, according to a lookup table for varying SNRs. The main contributions of this part include: (1) So far, the existing SNR estimation methods are challenged in cases of low SNR, nonstationary noise, and computational complexity. High computational complexity would increase processing delay that causes intelligibility degradation. A variance of spectral entropy (VSE) based SNR estimation method is developed as entropy based features have been shown to be more robust in the cases of low SNR and nonstationary noise. The SNR is estimated according to the estimated VSE-SNR relationship functions by measuring VSE of noisy speech. Our proposed method has an accuracy of 5 dB higher than other methods especially in the babble noise with fewer talkers (2 talkers) and low SNR levels (< 0 dB), with averaging processing time only about 30% of the noise power estimation based method. The proposed SNR estimation method is further improved by implementing a nonlinear filter-bank. The compression of the nonlinear filter-bank is shown to increase the stability of the relationship functions. As a result, the accuracy is improved by up to 2 dB in all types of tested noise. (2) A modification of Meddis’ MOC reflex model with a time constant dynamically optimized against varying SNRs is developed. The model incudes simulated inner hair cell response to reduce the model complexity, and now includes the SNR estimation method. Previous MOC reflex models often have fixed time constants that do not adapt to varying noise conditions, whilst our modified MOC reflex model has a time constant dynamically optimized according to the estimated SNRs. The results show a speech recognition accuracy of 8 % higher than the model using a fixed time constant of 2000 ms in different types of noise. (3) A speech enhancement algorithm is developed based on the modified MOC reflex model and implemented in an existing hearing aid system. The performance is evaluated by measuring the objective speech intelligibility metric of processed noisy speech. In different types of noise, the proposed algorithm increases intelligibility at least 20% in comparison to unprocessed noisy speech at SNRs between 0 dB and 20 dB, and over 15 % in comparison to processed noisy speech using the original MOC based algorithm in the hearing aid
    • …
    corecore