8 research outputs found

    Power quality improvement utilizing photovoltaic generation connected to a weak grid

    Get PDF
    Microgrid research and development in the past decades have been one of the most popular topics. Similarly, the photovoltaic generation has been surging among renewable generation in the past few years, thanks to the availability, affordability, technology maturity of the PV panels and the PV inverter in the general market. Unfortunately, quite often, the PV installations are connected to weak grids and may have been considered as the culprit of poor power quality affecting other loads in particular sensitive loads connected to the same point of common coupling (PCC). This paper is intended to demystify the renewable generation, and turns the negative perception into positive revelation of the superiority of PV generation to the power quality improvement in a microgrid system. The main objective of this work is to develop a control method for the PV inverter so that the power quality at the PCC will be improved under various disturbances. The method is to control the reactive current based on utilizing the grid current to counteract the negative impact of the disturbances. The proposed control method is verified in PSIM platform. Promising results have been obtaine

    New Three Phase Photovoltaic Energy Harvesting System for Generation of Balanced Voltages in Presence of Partial Shading, Module Mismatch, and Unequal Maximum Power Points

    Get PDF
    The worldwide energy demand is growing quickly, with an anticipated growth rate of 48% from 2012 to 2040. Consequently, investments in all forms of renewable energy generation systems have been growing rapidly due to growth rate and climate concerns. Increased use of clean renewable energy resources such as hydropower, wind, solar, geothermal, and biomass is expected to noticeably alleviate many present environmental concerns associated with fossil fuel-based energy generation. In recent years, wind and solar energies have gained the most attention among all other renewable resources. As a result, both have become the target of extensive research and development for dynamic performance optimization, cost reduction, and power reliability assurance. The performance of Photovoltaic (PV) systems is highly affected by environmental and ambient conditions such as irradiance fluctuations and temperature swings. Furthermore, the initial capital cost for establishing the PV infrastructure is very high. Therefore, it is essential that the PV systems always harvest the maximum energy possible by operating at the most efficient operating point, i.e. Maximum Power Point (MPP), to increase conversion efficiency to reach 100% and thus result in lowest cost of captured energy. The dissertation is an effort to develop a new PV conversion system for large scale PV grid-connected systems which provides 99.8% efficacy enhancements compared to conventional systems by balancing voltage mismatches between the PV modules. Hence, it analyzes the theoretical models for three selected DC/DC converters. To accomplish this goal, this work first introduces a new adaptive maximum PV energy extraction technique for PV grid-tied systems. Then, it supplements the proposed technique with a global search approach to distinguish absolute maximum power peaks within multi-local peaks in case of partially shaded PV module conditions. Next, it proposes an adaptive MPP tracking (MPPT) strategy based on the concept of model predictive control (MPC) in conjunction with a new current sensor-less approach to reduce the number of required sensors in the system. Finally, this work proposes a power balancing technique for injection of balanced three-phase power into the grid using a Cascaded H-Bridge (CHB) converter topology which brings together the entire system and results in the final proposed PV power system. The developed grid connected PV solar system is evaluated using simulations under realistic dynamic ambient conditions, partial shading, and fully shading conditions and the obtained results confirm its effectiveness and merits comparted to conventional systems. The resulting PV system offers enhanced reliability by guaranteeing effective system operation under unbalanced phase voltages caused by severe partial shading

    Recent Development of Hybrid Renewable Energy Systems

    Get PDF
    Abstract: The use of renewable energies continues to increase. However, the energy obtained from renewable resources is variable over time. The amount of energy produced from the renewable energy sources (RES) over time depends on the meteorological conditions of the region chosen, the season, the relief, etc. So, variable power and nonguaranteed energy produced by renewable sources implies intermittence of the grid. The key lies in supply sources integrated to a hybrid system (HS)

    3D representation and characterisation of IC topography

    Get PDF

    Characterisation of virtual power plants

    Get PDF
    The growing number of micro generation devices in the electrical network is leading many to consider that these devices can no longer be considered as fit and forget, but should instead be considered as having a demonstrable network impact which should be predicted and utilised. One of the techniques for considering the impacts of these devices is the Virtual Power Plant (VPP). The VPP is the aggregation of all the Distributed Generation (DG) connected into the network up to and including the connection voltage of the VPP, such that the cumulative power up the voltage levels can be seen in the single VPP unit, rather than across a broad spread of devices. One of the crucial tasks in characterising the VPP, developed in this work, is the ability to correctly predict and then aggregate the behaviour of several technology types which are weather driven, as a large proportion of DG is weather driven. Of this weather driven DG, some can only typically be dispatched with modification and the rest cannot be dispatched at all. The aggregation of the VPP as part of the electrical network is also developed, as the constraints of the network and the reliability of the network cannot be overlooked when considering the aggregation of the VPP. From a distribution network operator's (DNO) perspective, these characterisation models can be used to highlight problems in the network introduced by the addition of DG, but are also generally utilitarian in their role of predicting the power output (or negative load) found throughout the network due to DG. For a commercial agent interested in selling energy, these models allow for accurate predictions of energy to be determined for the trading period. A VPP agent would also be adversely affected by line failure in the network, leading to the development of an N-1 analysis based upon reliability rates of the network, which is used as the basis for a discussion on the impacts of single line failure and the mitigation available through feedback from the DNO.EThOS - Electronic Theses Online ServiceEPSRCGBUnited Kingdo

    Management, Technology and Learning for Individuals, Organisations and Society in Turbulent Environments

    Get PDF
    This book presents the collection of fifty papers which were presented in the Second International Conference on BUSINESS SUSTAINABILITY 2011 - Management, Technology and Learning for Individuals, Organisations and Society in Turbulent Environments , held in Póvoa de Varzim, Portugal, from 22ndto 24thof June, 2011.The main motive of the meeting was growing awareness of the importance of the sustainability issue. This importance had emerged from the growing uncertainty of the market behaviour that leads to the characterization of the market, i.e. environment, as turbulent. Actually, the characterization of the environment as uncertain and turbulent reflects the fact that the traditional technocratic and/or socio-technical approaches cannot effectively and efficiently lead with the present situation. In other words, the rise of the sustainability issue means the quest for new instruments to deal with uncertainty and/or turbulence. The sustainability issue has a complex nature and solutions are sought in a wide range of domains and instruments to achieve and manage it. The domains range from environmental sustainability (referring to natural environment) through organisational and business sustainability towards social sustainability. Concerning the instruments for sustainability, they range from traditional engineering and management methodologies towards “soft” instruments such as knowledge, learning, and creativity. The papers in this book address virtually whole sustainability problems space in a greater or lesser extent. However, although the uncertainty and/or turbulence, or in other words the dynamic properties, come from coupling of management, technology, learning, individuals, organisations and society, meaning that everything is at the same time effect and cause, we wanted to put the emphasis on business with the intention to address primarily companies and their businesses. Due to this reason, the main title of the book is “Business Sustainability 2.0” but with the approach of coupling Management, Technology and Learning for individuals, organisations and society in Turbulent Environments. Also, the notation“2.0” is to promote the publication as a step further from our previous publication – “Business Sustainability I” – as would be for a new version of software. Concerning the Second International Conference on BUSINESS SUSTAINABILITY, its particularity was that it had served primarily as a learning environment in which the papers published in this book were the ground for further individual and collective growth in understanding and perception of sustainability and capacity for building new instruments for business sustainability. In that respect, the methodology of the conference work was basically dialogical, meaning promoting dialog on the papers, but also including formal paper presentations. In this way, the conference presented a rich space for satisfying different authors’ and participants’ needs. Additionally, promoting the widest and global learning environment and participation, in accordance with the Conference's assumed mission to promote Proactive Generative Collaborative Learning, the Conference Organisation shares/puts open to the community the papers presented in this book, as well as the papers presented on the previous Conference(s). These papers can be accessed from the conference webpage (http://labve.dps.uminho.pt/bs11). In these terms, this book could also be understood as a complementary instrument to the Conference authors’ and participants’, but also to the wider readerships’ interested in the sustainability issues. The book brought together 107 authors from 11 countries, namely from Australia, Belgium, Brazil, Canada, France, Germany, Italy, Portugal, Serbia, Switzerland, and United States of America. The authors “ranged” from senior and renowned scientists to young researchers providing a rich and learning environment. At the end, the editors hope, and would like, that this book to be useful, meeting the expectation of the authors and wider readership and serving for enhancing the individual and collective learning, and to incentive further scientific development and creation of new papers. Also, the editors would use this opportunity to announce the intention to continue with new editions of the conference and subsequent editions of accompanying books on the subject of BUSINESS SUSTAINABILITY, the third of which is planned for year 2013.info:eu-repo/semantics/publishedVersio

    HERITAGE 2022. International Conference on Vernacular Heritage: Culture, People and Sustainability

    Full text link
    Vernacular architecture, tangible and intangible heritage of great importance to European and global culture, represents the response of a society culturally linked to its territory, in terms of climate and landscape. Its construction features are born from the practical experience of the inhabitants, making use of local materials, taking into consideration geographical conditions and cultural, social and constructive traditions, based on the conditions of the surrounding nature and habitat. Above all, it plays an essential role in contemporary society as it is able to teach us important principles and lessons for a respectful sustainable architecture. Vernacular Heritage: Culture, People and Sustainability will be a valuable source of information for academics and professionals in the fields of Environmental Science, Civil Engineering, Construction and Building Engineering and ArchitectureMileto, C.; Vegas LĂłpez-Manzanares, F.; Cristini, V.; GarcĂ­a Soriano, L. (2022). HERITAGE 2022. International Conference on Vernacular Heritage: Culture, People and Sustainability. Editorial Universitat PolitĂšcnica de ValĂšncia. https://doi.org/10.4995/HERITAGE2022.2022.15942EDITORIA

    CIMODE 2016: 3Âș Congresso Internacional de Moda e Design: proceedings

    Get PDF
    O CIMODE 2016 Ă© o terceiro Congresso Internacional de Moda e Design, a decorrer de 9 a 12 de maio de 2016 na cidade de Buenos Aires, subordinado ao tema : EM--‐TRAMAS. A presente edição Ă© organizada pela Faculdade de Arquitetura, Desenho e Urbanismo da Universidade de Buenos Aires, em conjunto com o Departamento de Engenharia TĂȘxtil da Universidade do Minho e com a ABEPEM – Associação Brasileira de Estudos e Pesquisa em Moda.info:eu-repo/semantics/publishedVersio
    corecore