3,755 research outputs found

    How fast can the wall move? A study of the electroweak phase transition dynamics

    Get PDF
    We consider the dynamics of bubble growth in the Minimal Standard Model at the electroweak phase transition and determine the shape and the velocity of the phase boundary, or bubble wall. We show that in the semi-classical approximation the friction on the wall arises from the deviation of massive particle populations from thermal equilibrium. We treat these with Boltzmann equations in a fluid approximation. This approximation is reasonable for the top quarks and the light species while it underestimates the friction from the infrared WW bosons and Higgs particles. We use the two-loop finite temperature effective potential and find a subsonic bubble wall for the whole range of Higgs masses 0<mH<900<m_H<90GeV. The result is weakly dependent on mHm_H: the wall velocity vwv_w falls in the range 0.36<vw<0.440.36<v_w<0.44, while the wall thickness is in the range 29>LT>2329> L T > 23 . The wall is thicker than the phase equilibrium value because out of equilibrium particles exert more friction on the back than on the base of a moving wall. We also consider the effect of an infrared gauge condensate which may exist in the symmetric phase; modelling it simplemindedly, we find that the wall may become supersonic, but not ultrarelativistic.Comment: 42 pages, plain latex, with three figures. Minor editing August 1 (we figured out how to do analytically some integrals we previously did numerically, made corresponding (slight) changes to numerical results, and corrected some typos.

    Kinetic Solvers with Adaptive Mesh in Phase Space

    Full text link
    An Adaptive Mesh in Phase Space (AMPS) methodology has been developed for solving multi-dimensional kinetic equations by the discrete velocity method. A Cartesian mesh for both configuration (r) and velocity (v) spaces is produced using a tree of trees data structure. The mesh in r-space is automatically generated around embedded boundaries and dynamically adapted to local solution properties. The mesh in v-space is created on-the-fly for each cell in r-space. Mappings between neighboring v-space trees implemented for the advection operator in configuration space. We have developed new algorithms for solving the full Boltzmann and linear Boltzmann equations with AMPS. Several recent innovations were used to calculate the discrete Boltzmann collision integral with dynamically adaptive mesh in velocity space: importance sampling, multi-point projection method, and the variance reduction method. We have developed an efficient algorithm for calculating the linear Boltzmann collision integral for elastic and inelastic collisions in a Lorentz gas. New AMPS technique has been demonstrated for simulations of hypersonic rarefied gas flows, ion and electron kinetics in weakly ionized plasma, radiation and light particle transport through thin films, and electron streaming in semiconductors. We have shown that AMPS allows minimizing the number of cells in phase space to reduce computational cost and memory usage for solving challenging kinetic problems

    Trinity: A Unified Treatment of Turbulence, Transport, and Heating in Magnetized Plasmas

    Get PDF
    To faithfully simulate ITER and other modern fusion devices, one must resolve electron and ion fluctuation scales in a five-dimensional phase space and time. Simultaneously, one must account for the interaction of this turbulence with the slow evolution of the large-scale plasma profiles. Because of the enormous range of scales involved and the high dimensionality of the problem, resolved first-principles global simulations are very challenging using conventional (brute force) techniques. In this thesis, the problem of resolving turbulence is addressed by developing velocity space resolution diagnostics and an adaptive collisionality that allow for the confident simulation of velocity space dynamics using the approximate minimal necessary dissipation. With regard to the wide range of scales, a new approach has been developed in which turbulence calculations from multiple gyrokinetic flux tube simulations are coupled together using transport equations to obtain self-consistent, steady-state background profiles and corresponding turbulent fluxes and heating. This approach is embodied in a new code, Trinity, which is capable of evolving equilibrium profiles for multiple species, including electromagnetic effects and realistic magnetic geometry, at a fraction of the cost of conventional global simulations. Furthermore, an advanced model physical collision operator for gyrokinetics has been derived and implemented, allowing for the study of collisional turbulent heating, which has not been extensively studied. To demonstrate the utility of the coupled flux tube approach, preliminary results from Trinity simulations of the core of an ITER plasma are presented.Comment: 187 pages, 53 figures, Ph.D. thesis in physics at University of Maryland, single-space versio

    Driven waves in a two-fluid plasma

    Full text link
    We study the physics of wave propagation in a weakly ionised plasma, as it applies to the formation of multifluid, MHD shock waves. We model the plasma as separate charged and neutral fluids which are coupled by ion-neutral friction. At times much less than the ion-neutral drag time, the fluids are decoupled and so evolve independently. At later times, the evolution is determined by the large inertial mismatch between the charged and neutral particles. The neutral flow continues to evolve independently; the charged flow is driven by and slaved to the neutral flow by friction. We calculate this driven flow analytically by considering the special but realistic case where the charged fluid obeys linearized equations of motion. We carry out an extensive analysis of linear, driven, MHD waves. The physics of driven MHD waves is embodied in certain Green functions which describe wave propagation on short time scales, ambipolar diffusion on long time scales, and transitional behavior at intermediate times. By way of illustration, we give an approximate solution for the formation of a multifluid shock during the collision of two identical interstellar clouds. The collision produces forward- and reverse J shocks in the neutral fluid and a transient in the charged fluid. The latter rapidly evolves into a pair of magnetic precursors on the J shocks, wherein the ions undergo force free motion and the magnetic field grows monotonically with time. The flow appears to be self similar at the time when linear analysis ceases to be valid.Comment: 18 pages including 24 figures, accepted by MNRA
    • …
    corecore