1 research outputs found

    Distributed Anonymity Based on Blockchain in Vehicular Ad Hoc Network by Block Size Calibrating

    Get PDF
    The network connectivity problem is one of the critical challenges of an anonymous server implementation in the VANET. The objective and main contribution of this paper are to assure the anonymity in VANET environments. In the proposed blockchain method, before packaging transactions into blocks, anonymity risk reduced through techniques such as k-anonymity, graph processing, dummy node, and silence period. This paper addresses the challenges of anonymous servers, such as update challenges and single point of failure, by exploiting append-only, distributed, and anonymity features. Although mounting the blockchain process with asymmetric cryptography solves the connectivity challenge, start-up delay and network overhead are severe. The significant feature of the proposed method solves this delay challenge by aggregating many transactions into a block and fixing constraint range of multicasting blocks. Also, aggregating transactions of various end-users into a block preserves the path anonymity. The asymmetric cryptography with ring public and private keys protects the identity anonymity as well as unlinkability. The robust anonymity mechanism existence and the traceability of all transactions constitute the main advantages of the proposed method. The simulation is running by the python to evaluate blockchain performance in VANET with connectivity failure and rapidly changing topology. The results indicate the stabilization of the proposed method in the VANET environment
    corecore