5,598 research outputs found

    Thirty-two Goldbach Variations

    Full text link
    We give thirty-two diverse proofs of a small mathematical gem--the fundamental Euler sum identity zeta(2,1)=zeta(3) =8zeta(\bar 2,1). We also discuss various generalizations for multiple harmonic (Euler) sums and some of their many connections, thereby illustrating both the wide variety of techniques fruitfully used to study such sums and the attraction of their study.Comment: v1: 34 pages AMSLaTeX. v2: 41 pages AMSLaTeX. New introductory material added and material on inequalities, Hilbert matrix and Witten zeta functions. Errors in the second section on Complex Line Integrals are corrected. To appear in International Journal of Number Theory. Title change

    Massive 3-loop Feynman diagrams reducible to SC* primitives of algebras of the sixth root of unity

    Get PDF
    In each of the 10 cases with propagators of unit or zero mass, the finite part of the scalar 3-loop tetrahedral vacuum diagram is reduced to 4-letter words in the 7-letter alphabet of the 1-forms Ω:=dz/z\Omega:=dz/z and ωp:=dz/(λpz)\omega_p:=dz/ (\lambda^{-p}-z), where λ\lambda is the sixth root of unity. Three diagrams yield only ζ(Ω3ω0)=1/90π4\zeta(\Omega^3\omega_0)=1/90\pi^4. In two cases π4\pi^4 combines with the Euler-Zagier sum ζ(Ω2ω3ω0)=m>n>0(1)m+n/m3n\zeta(\Omega^2\omega_3\omega_0)=\sum_{m> n>0}(-1)^{m+n}/m^3n; in three cases it combines with the square of Clausen's Cl2(π/3)=ζ(Ωω1)=n>0sin(πn/3)/n2Cl_2(\pi/3)=\Im \zeta(\Omega\omega_1)=\sum_{n>0}\sin(\pi n/3)/n^2. The case with 6 masses involves no further constant; with 5 masses a Deligne-Euler-Zagier sum appears: ζ(Ω2ω3ω1)=m>n>0(1)mcos(2πn/3)/m3n\Re \zeta(\Omega^2\omega_3\omega_1)= \sum_{m>n>0}(-1)^m\cos(2\pi n/3)/m^3n. The previously unidentified term in the 3-loop rho-parameter of the standard model is merely D3=6ζ(3)6Cl22(π/3)1/24π4D_3=6\zeta(3)-6 Cl_2^2(\pi/3)-{1/24}\pi^4. The remarkable simplicity of these results stems from two shuffle algebras: one for nested sums; the other for iterated integrals. Each diagram evaluates to 10 000 digits in seconds, because the primitive words are transformable to exponentially convergent single sums, as recently shown for ζ(3)\zeta(3) and ζ(5)\zeta(5), familiar in QCD. Those are SC(2)^*(2) constants, whose base of super-fast computation is 2. Mass involves the novel base-3 set SC(3)^*(3). All 10 diagrams reduce to SC(3)^*(3)\cupSC(2)^* (2) constants and their products. Only the 6-mass case entails both bases.Comment: 41 pages, LaTe

    A Quantum Field Theoretical Representation of Euler-Zagier Sums

    Full text link
    We establish a novel representation of arbitrary Euler-Zagier sums in terms of weighted vacuum graphs. This representation uses a toy quantum field theory with infinitely many propagators and interaction vertices. The propagators involve Bernoulli polynomials and Clausen functions to arbitrary orders. The Feynman integrals of this model can be decomposed in terms of an algebra of elementary vertex integrals whose structure we investigate. We derive a large class of relations between multiple zeta values, of arbitrary lengths and weights, using only a certain set of graphical manipulations on Feynman diagrams. Further uses and possible generalizations of the model are pointed out.Comment: Standard latex, 31 pages, 13 figures, final published versio

    Special values of multiple polylogarithms

    Get PDF
    Historically, the polylogarithm has attracted specialists and non-specialists alike with its lovely evaluations. Much the same can be said for Euler sums (or multiple harmonic sums), which, within the past decade, have arisen in combinatorics, knot theory and high-energy physics. More recently, we have been forced to consider multidimensional extensions encompassing the classical polylogarithm, Euler sums, and the Riemann zeta function. Here, we provide a general framework within which previously isolated results can now be properly understood. Applying the theory developed herein, we prove several previously conjectured evaluations, including an intriguing conjecture of Don Zagier

    Association of multiple zeta values with positive knots via Feynman diagrams up to 9 loops

    Get PDF
    It is found that the number, MnM_n, of irreducible multiple zeta values (MZVs) of weight nn, is generated by 1x2x3=n(1xn)Mn1-x^2-x^3=\prod_n (1-x^n)^{M_n}. For 9n39\ge n\ge3, MnM_n enumerates positive knots with nn crossings. Positive knots to which field theory assigns knot-numbers that are not MZVs first appear at 10 crossings. We identify all the positive knots, up to 15 crossings, that are in correspondence with irreducible MZVs, by virtue of the connection between knots and numbers realized by Feynman diagrams with up to 9 loops.Comment: 15 pages, Latex, figures using EPSF, replaced version has references and conclusions updated, Eq.(7) revised; as to appear in Phys.Lett.

    The evaluation of Tornheim double sums. Part 1

    Get PDF
    We provide an explicit formula for the Tornheim double series in terms of integrals involving the Hurwitz zeta function. We also study the limit when the parameters of the Tornheim sum become natural numbers, and show that in that case it can be expressed in terms of definite integrals of triple products of Bernoulli polynomials and the Bernoulli function Ak(q):=kζ(1k,q)A_k (q): = k\zeta '(1 - k,q).Comment: 23 pages, AMS-LaTex, to appear in Journal of Number Theor
    corecore