1,539 research outputs found

    Simulation and experimental evaluation of a flexible time triggered ethernet architecture applied in satellite nano/micro launchers

    Get PDF
    The success of small satellites has led to the study of new technologies for the realization of Nano and Micro Launch Vehicle (NMLV) in order to make competitive launch costs. The paper has the objective to define and experimentally investigate the performance of a communication system for NMLV interconnecting the End Systems as On-Board Computer (OBC), telemetry apparatus, Navigation Unit...we propose a low cost Ethernet-based solution able to provide the devices with high interconnection bandwidth. To guarantee hard delays to the Guide, Navigation and Control applications we propose some architectural changes of the traditional Ethernet network with the introduction of a layer implemented in the End Systems and allow for the lack of any contention on the network links. We show how the proposed solution has comparable performance to the one of TTEthernet standard that is a very expensive solution. An experimental test-bed equipped with Ethernet switches and Hercules boards by Texas Instruments is also provided to prove the feasibility of the proposed solution

    Enhancing HPC on Virtual Systems in Clouds through Optimizing Virtual Overlay Networks

    Get PDF
    Virtual Ethernet overlay provides a powerful model for realizing virtual distributed and parallel computing systems with strong isolation, portability, and recoverability properties. However, in extremely high throughput and low latency networks, such overlays can suffer from bandwidth and latency limitations, which is of particular concern in HPC environments. Through a careful and quantitative analysis, I iden- tify three core issues limiting performance: delayed and excessive virtual interrupt delivery into guests, copies between host and guest data buffers during encapsulation, and the semantic gap between virtual Ethernet features and underlying physical network features. I propose three novel optimizations in response: optimistic timer- free virtual interrupt injection, zero-copy cut-through data forwarding, and virtual TCP offload. These optimizations improve the latency and bandwidth of the overlay network on 10 Gbps Ethernet and InfiniBand interconnects, resulting in near-native performance for a wide range of microbenchmarks and MPI application benchmarks

    PhyNetLab: An IoT-Based Warehouse Testbed

    Full text link
    Future warehouses will be made of modular embedded entities with communication ability and energy aware operation attached to the traditional materials handling and warehousing objects. This advancement is mainly to fulfill the flexibility and scalability needs of the emerging warehouses. However, it leads to a new layer of complexity during development and evaluation of such systems due to the multidisciplinarity in logistics, embedded systems, and wireless communications. Although each discipline provides theoretical approaches and simulations for these tasks, many issues are often discovered in a real deployment of the full system. In this paper we introduce PhyNetLab as a real scale warehouse testbed made of cyber physical objects (PhyNodes) developed for this type of application. The presented platform provides a possibility to check the industrial requirement of an IoT-based warehouse in addition to the typical wireless sensor networks tests. We describe the hardware and software components of the nodes in addition to the overall structure of the testbed. Finally, we will demonstrate the advantages of the testbed by evaluating the performance of the ETSI compliant radio channel access procedure for an IoT warehouse

    Heterogeneous models and analyses in the design of real-time embedded systems - an avionic case-study

    Get PDF
    The development of embedded systems according to Model-Driven Development relies on two complementary activities: system mod- eling on the one hand and analysis of the non-functional properties, such as timing properties, on the other hand. Yet, the coupling be- tween models and analyses remains largely disregarded so far: e.g. how to apply an analysis on a model? How to manage the analysis process? This paper presents an application of our research on this topic. In particular, we show that our approach makes it possible to combine heterogeneous models and analyses in the design of an avionic system. We use two languages to model the system at di erent levels of abstraction: the industry standard AADL (Ar- chitecture Analysis and Design Language) and the more recent implementation-oriented CPAL language (Cyber-Physical Action Language). We then combine di erent real-time scheduling analy- ses so as to gradually de ne the task and network parameters and nally validate the schedulability of all activities of the system

    GCC-Plugin for Automated Accelerator Generation and Integration on Hybrid FPGA-SoCs

    Full text link
    In recent years, architectures combining a reconfigurable fabric and a general purpose processor on a single chip became increasingly popular. Such hybrid architectures allow extending embedded software with application specific hardware accelerators to improve performance and/or energy efficiency. Aiding system designers and programmers at handling the complexity of the required process of hardware/software (HW/SW) partitioning is an important issue. Current methods are often restricted, either to bare-metal systems, to subsets of mainstream programming languages, or require special coding guidelines, e.g., via annotations. These restrictions still represent a high entry barrier for the wider community of programmers that new hybrid architectures are intended for. In this paper we revisit HW/SW partitioning and present a seamless programming flow for unrestricted, legacy C code. It consists of a retargetable GCC plugin that automatically identifies code sections for hardware acceleration and generates code accordingly. The proposed workflow was evaluated on the Xilinx Zynq platform using unmodified code from an embedded benchmark suite.Comment: Presented at Second International Workshop on FPGAs for Software Programmers (FSP 2015) (arXiv:1508.06320

    Pando: Personal Volunteer Computing in Browsers

    Full text link
    The large penetration and continued growth in ownership of personal electronic devices represents a freely available and largely untapped source of computing power. To leverage those, we present Pando, a new volunteer computing tool based on a declarative concurrent programming model and implemented using JavaScript, WebRTC, and WebSockets. This tool enables a dynamically varying number of failure-prone personal devices contributed by volunteers to parallelize the application of a function on a stream of values, by using the devices' browsers. We show that Pando can provide throughput improvements compared to a single personal device, on a variety of compute-bound applications including animation rendering and image processing. We also show the flexibility of our approach by deploying Pando on personal devices connected over a local network, on Grid5000, a French-wide computing grid in a virtual private network, and seven PlanetLab nodes distributed in a wide area network over Europe.Comment: 14 pages, 12 figures, 2 table

    Investigation of the deployment of Android as a user interface for ovens

    Get PDF
    This theses is conducted in cooperation with BSH Hausgeräte GmbH. The target is the investigation of the applicability of Android as an operating system for home appliances, specifically for ovens. In order to draw conclusions in regard of applicability, three major topics will be investigated. For a start, the performance of Android running on moderate target hardware will be analysed. The focus lies on graphics, since a high quality graphical user interface is most likely to be the crucial point in terms of performance. Providing a smooth and responsive graphical user interface is decisive for a satisfying user experience. Furthermore, originating from the mobile domain, Android requires an array of modifications prior to being embedded into an oven. The goal is to identify these potential aspects that need modification and give appropriate solutions, thus also providing an estimate of the required effort for the embedding process. Finally, potential inter-process communication mechanisms will be investigated with the objective to identify the most eligible method(s) for the communication between an Android application and the underlying oven hardware

    A critical analysis of research potential, challenges and future directives in industrial wireless sensor networks

    Get PDF
    In recent years, Industrial Wireless Sensor Networks (IWSNs) have emerged as an important research theme with applications spanning a wide range of industries including automation, monitoring, process control, feedback systems and automotive. Wide scope of IWSNs applications ranging from small production units, large oil and gas industries to nuclear fission control, enables a fast-paced research in this field. Though IWSNs offer advantages of low cost, flexibility, scalability, self-healing, easy deployment and reformation, yet they pose certain limitations on available potential and introduce challenges on multiple fronts due to their susceptibility to highly complex and uncertain industrial environments. In this paper a detailed discussion on design objectives, challenges and solutions, for IWSNs, are presented. A careful evaluation of industrial systems, deadlines and possible hazards in industrial atmosphere are discussed. The paper also presents a thorough review of the existing standards and industrial protocols and gives a critical evaluation of potential of these standards and protocols along with a detailed discussion on available hardware platforms, specific industrial energy harvesting techniques and their capabilities. The paper lists main service providers for IWSNs solutions and gives insight of future trends and research gaps in the field of IWSNs
    • …
    corecore