53,052 research outputs found

    Parameterized Construction of Program Representations for Sparse Dataflow Analyses

    Get PDF
    Data-flow analyses usually associate information with control flow regions. Informally, if these regions are too small, like a point between two consecutive statements, we call the analysis dense. On the other hand, if these regions include many such points, then we call it sparse. This paper presents a systematic method to build program representations that support sparse analyses. To pave the way to this framework we clarify the bibliography about well-known intermediate program representations. We show that our approach, up to parameter choice, subsumes many of these representations, such as the SSA, SSI and e-SSA forms. In particular, our algorithms are faster, simpler and more frugal than the previous techniques used to construct SSI - Static Single Information - form programs. We produce intermediate representations isomorphic to Choi et al.'s Sparse Evaluation Graphs (SEG) for the family of data-flow problems that can be partitioned per variables. However, contrary to SEGs, we can handle - sparsely - problems that are not in this family

    Foundations and modelling of dynamic networks using Dynamic Graph Neural Networks: A survey

    Full text link
    Dynamic networks are used in a wide range of fields, including social network analysis, recommender systems, and epidemiology. Representing complex networks as structures changing over time allow network models to leverage not only structural but also temporal patterns. However, as dynamic network literature stems from diverse fields and makes use of inconsistent terminology, it is challenging to navigate. Meanwhile, graph neural networks (GNNs) have gained a lot of attention in recent years for their ability to perform well on a range of network science tasks, such as link prediction and node classification. Despite the popularity of graph neural networks and the proven benefits of dynamic network models, there has been little focus on graph neural networks for dynamic networks. To address the challenges resulting from the fact that this research crosses diverse fields as well as to survey dynamic graph neural networks, this work is split into two main parts. First, to address the ambiguity of the dynamic network terminology we establish a foundation of dynamic networks with consistent, detailed terminology and notation. Second, we present a comprehensive survey of dynamic graph neural network models using the proposed terminologyComment: 28 pages, 9 figures, 8 table

    Exploring Student Check-In Behavior for Improved Point-of-Interest Prediction

    Full text link
    With the availability of vast amounts of user visitation history on location-based social networks (LBSN), the problem of Point-of-Interest (POI) prediction has been extensively studied. However, much of the research has been conducted solely on voluntary checkin datasets collected from social apps such as Foursquare or Yelp. While these data contain rich information about recreational activities (e.g., restaurants, nightlife, and entertainment), information about more prosaic aspects of people's lives is sparse. This not only limits our understanding of users' daily routines, but more importantly the modeling assumptions developed based on characteristics of recreation-based data may not be suitable for richer check-in data. In this work, we present an analysis of education "check-in" data using WiFi access logs collected at Purdue University. We propose a heterogeneous graph-based method to encode the correlations between users, POIs, and activities, and then jointly learn embeddings for the vertices. We evaluate our method compared to previous state-of-the-art POI prediction methods, and show that the assumptions made by previous methods significantly degrade performance on our data with dense(r) activity signals. We also show how our learned embeddings could be used to identify similar students (e.g., for friend suggestions).Comment: published in KDD'1
    corecore