4 research outputs found

    On Pattern Selection for Laparoscope Calibration

    Get PDF
    Camera calibration is a key requirement for augmented reality in surgery. Calibration of laparoscopes provides two challenges that are not sufficiently addressed in the literature. In the case of stereo laparoscopes the small distance (less than 5mm) between the channels means that the calibration pattern is an order of magnitude more distant than the stereo separation. For laparoscopes in general, if an external tracking system is used, hand-eye calibration is difficult due to the long length of the laparoscope. Laparoscope intrinsic, stereo and hand-eye calibration all rely on accurate feature point selection and accurate estimation of the camera pose with respect to a calibration pattern. We compare 3 calibration patterns, chessboard, rings, and AprilTags. We measure the error in estimating the camera intrinsic parameters and the camera poses. Accuracy of camera pose estimation will determine the accuracy with which subsequent stereo or hand-eye calibration can be done. We compare the results of repeated real calibrations and simulations using idealised noise, to determine the expected accuracy of different methods and the sources of error. The results do indicate that feature detection based on rings is more accurate than a chessboard, however this doesnā€™t necessarily lead to a better calibration. Using a grid with identifiable tags enables detection of features nearer the image boundary, which may improve calibration

    Electromagnetic tracking in imageā€guided laparoscopic surgery: Comparison with optical tracking and feasibility study of a combined laparoscope and laparoscopic ultrasound system

    Get PDF
    PURPOSE: In imageā€guided laparoscopy, optical tracking is commonly employed, but electromagnetic (EM) systems have been proposed in the literature. In this paper, we provide a thorough comparison of EM and optical tracking systems for use in imageā€guided laparoscopic surgery and a feasibility study of a combined, EMā€tracked laparoscope and laparoscopic ultrasound (LUS) image guidance system. METHODS: We first assess the tracking accuracy of a laparoscope with two optical trackers tracking retroreflective markers mounted on the shaft and an EM tracker with the sensor embedded at the proximal end, using a standard evaluation plate. We then use a stylus to test the precision of position measurement and accuracy of distance measurement of the trackers. Finally, we assess the accuracy of an image guidance system comprised of an EMā€tracked laparoscope and an EMā€tracked LUS probe. RESULTS: In the experiment using a standard evaluation plate, the two optical trackers show less jitter in position and orientation measurement than the EM tracker. Also, the optical trackers demonstrate better consistency of orientation measurement within the test volume. However, their accuracy of measuring relative positions decreases significantly with longer distances whereas the EM tracker's performance is stable; at 50 mm distance, the RMS errors for the two optical trackers are 0.210 and 0.233 mm, respectively, and it is 0.214 mm for the EM tracker; at 250 mm distance, the RMS errors for the two optical trackers become 1.031 and 1.178 mm, respectively, while it is 0.367 mm for the EM tracker. In the experiment using the stylus, the two optical trackers have RMS errors of 1.278 and 1.555 mm in localizing the stylus tip, and it is 1.117 mm for the EM tracker. Our prototype of a combined, EMā€tracked laparoscope and LUS system using representative calibration methods showed a RMS point localization error of 3.0 mm for the laparoscope and 1.3 mm for the LUS probe, the lager error of the former being predominantly due to the triangulation error when using a narrowā€baseline stereo laparoscope. CONCLUSIONS: The errors incurred by optical trackers, due to the leverā€arm effect and variation in tracking accuracy in the depth direction, would make EMā€tracked solutions preferable if the EM sensor is placed at the proximal end of the laparoscope

    Evaluation of Electromagnetic Tracking for Stereoscopic Augmented Reality Laparoscopic Visualization

    No full text
    Ā© Springer International Publishing Switzerland 2014. Without the requirement of line-of-sight, electromagnetic (EM) tracking is increasingly studied and used in clinical applications. We designed experiments to evaluate a commercial EM tracking system in three situations: using the EM sensor by itself; fixing the sensor onto the handle of a stereoscopic (i.e., 3D) laparoscope; and placing the sensor on the outside surface of the head of a laparoscopic ultrasound (LUS) transducer. The 3D laparoscope and the LUS transducer are core elements in our stereoscopic laparoscopic augmented reality visualization system, which overlays real-time LUS image on real-time 3D laparoscopic video for minimally invasive laparoscopic surgery. Jitter error, positional static and dynamic accuracies were assessed with the use of LEGOĀ® basic bricks and building plates. The results show that the EM tracking system being tested yields satisfactory accuracy results and the attachment of the sensor to the planned positions on the probes is possible
    corecore