426 research outputs found

    Development, Implementation and Pre-clinical Evaluation of Medical Image Computing Tools in Support of Computer-aided Diagnosis: Respiratory, Orthopedic and Cardiac Applications

    Get PDF
    Over the last decade, image processing tools have become crucial components of all clinical and research efforts involving medical imaging and associated applications. The imaging data available to the radiologists continue to increase their workload, raising the need for efficient identification and visualization of the required image data necessary for clinical assessment. Computer-aided diagnosis (CAD) in medical imaging has evolved in response to the need for techniques that can assist the radiologists to increase throughput while reducing human error and bias without compromising the outcome of the screening, diagnosis or disease assessment. More intelligent, but simple, consistent and less time-consuming methods will become more widespread, reducing user variability, while also revealing information in a more clear, visual way. Several routine image processing approaches, including localization, segmentation, registration, and fusion, are critical for enhancing and enabling the development of CAD techniques. However, changes in clinical workflow require significant adjustments and re-training and, despite the efforts of the academic research community to develop state-of-the-art algorithms and high-performance techniques, their footprint often hampers their clinical use. Currently, the main challenge seems to not be the lack of tools and techniques for medical image processing, analysis, and computing, but rather the lack of clinically feasible solutions that leverage the already developed and existing tools and techniques, as well as a demonstration of the potential clinical impact of such tools. Recently, more and more efforts have been dedicated to devising new algorithms for localization, segmentation or registration, while their potential and much intended clinical use and their actual utility is dwarfed by the scientific, algorithmic and developmental novelty that only result in incremental improvements over already algorithms. In this thesis, we propose and demonstrate the implementation and evaluation of several different methodological guidelines that ensure the development of image processing tools --- localization, segmentation and registration --- and illustrate their use across several medical imaging modalities --- X-ray, computed tomography, ultrasound and magnetic resonance imaging --- and several clinical applications: Lung CT image registration in support for assessment of pulmonary nodule growth rate and disease progression from thoracic CT images. Automated reconstruction of standing X-ray panoramas from multi-sector X-ray images for assessment of long limb mechanical axis and knee misalignment. Left and right ventricle localization, segmentation, reconstruction, ejection fraction measurement from cine cardiac MRI or multi-plane trans-esophageal ultrasound images for cardiac function assessment. When devising and evaluating our developed tools, we use clinical patient data to illustrate the inherent clinical challenges associated with highly variable imaging data that need to be addressed before potential pre-clinical validation and implementation. In an effort to provide plausible solutions to the selected applications, the proposed methodological guidelines ensure the development of image processing tools that help achieve sufficiently reliable solutions that not only have the potential to address the clinical needs, but are sufficiently streamlined to be potentially translated into eventual clinical tools provided proper implementation. G1: Reducing the number of degrees of freedom (DOF) of the designed tool, with a plausible example being avoiding the use of inefficient non-rigid image registration methods. This guideline addresses the risk of artificial deformation during registration and it clearly aims at reducing complexity and the number of degrees of freedom. G2: The use of shape-based features to most efficiently represent the image content, either by using edges instead of or in addition to intensities and motion, where useful. Edges capture the most useful information in the image and can be used to identify the most important image features. As a result, this guideline ensures a more robust performance when key image information is missing. G3: Efficient method of implementation. This guideline focuses on efficiency in terms of the minimum number of steps required and avoiding the recalculation of terms that only need to be calculated once in an iterative process. An efficient implementation leads to reduced computational effort and improved performance. G4: Commence the workflow by establishing an optimized initialization and gradually converge toward the final acceptable result. This guideline aims to ensure reasonable outcomes in consistent ways and it avoids convergence to local minima, while gradually ensuring convergence to the global minimum solution. These guidelines lead to the development of interactive, semi-automated or fully-automated approaches that still enable the clinicians to perform final refinements, while they reduce the overall inter- and intra-observer variability, reduce ambiguity, increase accuracy and precision, and have the potential to yield mechanisms that will aid with providing an overall more consistent diagnosis in a timely fashion

    3-D lung deformation and function from respiratory-gated 4-D x-ray CT images : application to radiation treatment planning.

    Get PDF
    Many lung diseases or injuries can cause biomechanical or material property changes that can alter lung function. While the mechanical changes associated with the change of the material properties originate at a regional level, they remain largely asymptomatic and are invisible to global measures of lung function until they have advanced significantly and have aggregated. In the realm of external beam radiation therapy of patients suffering from lung cancer, determination of patterns of pre- and post-treatment motion, and measures of regional and global lung elasticity and function are clinically relevant. In this dissertation, we demonstrate that 4-D CT derived ventilation images, including mechanical strain, provide an accurate and physiologically relevant assessment of regional pulmonary function which may be incorporated into the treatment planning process. Our contributions are as follows: (i) A new volumetric deformable image registration technique based on 3-D optical flow (MOFID) has been designed and implemented which permits the possibility of enforcing physical constraints on the numerical solutions for computing motion field from respiratory-gated 4-D CT thoracic images. The proposed optical flow framework is an accurate motion model for the thoracic CT registration problem. (ii) A large displacement landmark-base elastic registration method has been devised for thoracic CT volumetric image sets containing large deformations or changes, as encountered for example in registration of pre-treatment and post-treatment images or multi-modality registration. (iii) Based on deformation maps from MOFIO, a novel framework for regional quantification of mechanical strain as an index of lung functionality has been formulated for measurement of regional pulmonary function. (iv) In a cohort consisting of seven patients with non-small cell lung cancer, validation of physiologic accuracy of the 4-0 CT derived quantitative images including Jacobian metric of ventilation, Vjac, and principal strains, (V?1, V?2, V?3, has been performed through correlation of the derived measures with SPECT ventilation and perfusion scans. The statistical correlations with SPECT have shown that the maximum principal strain pulmonary function map derived from MOFIO, outperforms all previously established ventilation metrics from 40-CT. It is hypothesized that use of CT -derived ventilation images in the treatment planning process will help predict and prevent pulmonary toxicity due to radiation treatment. It is also hypothesized that measures of regional and global lung elasticity and function obtained during the course of treatment may be used to adapt radiation treatment. Having objective methods with which to assess pre-treatment global and regional lung function and biomechanical properties, the radiation treatment dose can potentially be escalated to improve tumor response and local control

    Coronary Artery Segmentation and Motion Modelling

    No full text
    Conventional coronary artery bypass surgery requires invasive sternotomy and the use of a cardiopulmonary bypass, which leads to long recovery period and has high infectious potential. Totally endoscopic coronary artery bypass (TECAB) surgery based on image guided robotic surgical approaches have been developed to allow the clinicians to conduct the bypass surgery off-pump with only three pin holes incisions in the chest cavity, through which two robotic arms and one stereo endoscopic camera are inserted. However, the restricted field of view of the stereo endoscopic images leads to possible vessel misidentification and coronary artery mis-localization. This results in 20-30% conversion rates from TECAB surgery to the conventional approach. We have constructed patient-specific 3D + time coronary artery and left ventricle motion models from preoperative 4D Computed Tomography Angiography (CTA) scans. Through temporally and spatially aligning this model with the intraoperative endoscopic views of the patient's beating heart, this work assists the surgeon to identify and locate the correct coronaries during the TECAB precedures. Thus this work has the prospect of reducing the conversion rate from TECAB to conventional coronary bypass procedures. This thesis mainly focus on designing segmentation and motion tracking methods of the coronary arteries in order to build pre-operative patient-specific motion models. Various vessel centreline extraction and lumen segmentation algorithms are presented, including intensity based approaches, geometric model matching method and morphology-based method. A probabilistic atlas of the coronary arteries is formed from a group of subjects to facilitate the vascular segmentation and registration procedures. Non-rigid registration framework based on a free-form deformation model and multi-level multi-channel large deformation diffeomorphic metric mapping are proposed to track the coronary motion. The methods are applied to 4D CTA images acquired from various groups of patients and quantitatively evaluated

    Solving nonrigid registration with sliding and bending boundary conditions

    Get PDF
    In the past 20 years, there have been significant advances in the use of medical imaging in patient care. Today, image registration is being used by doctors all over the world to compare computed tomography (CT), Magnetic Resonance Imaging (MRI), X-rays, Ultrasound (US), Positron Emission Tomography (PET), and/or Single Photon Emission Computed Tomography (SPECT) images of their patients from different times to formulate an accurate diagnosis. Mathematically, image registration can be posed as an initial boundary value problem (IBVP). When applied to medical imaging, the current boundary conditions being used are not physically meaningful. We are proposing two new boundary conditions that are more physically meaningful because they were designed as combinations of the current boundary conditions. Therefore the image registration algorithms we employ are slight variations of the current techniques. We show how to apply our boundary conditions to the current image registration techniques and compare the results against the current boundary conditions. By comparing the results, we were able to illustrate the proposed boundary conditions created more visually pleasing and physically realistic results in both two and three dimensions

    A novel MRA-based framework for the detection of changes in cerebrovascular blood pressure.

    Get PDF
    Background: High blood pressure (HBP) affects 75 million adults and is the primary or contributing cause of mortality in 410,000 adults each year in the United States. Chronic HBP leads to cerebrovascular changes and is a significant contributor for strokes, dementia, and cognitive impairment. Non-invasive measurement of changes in cerebral vasculature and blood pressure (BP) may enable physicians to optimally treat HBP patients. This manuscript describes a method to non-invasively quantify changes in cerebral vasculature and BP using Magnetic Resonance Angiography (MRA) imaging. Methods: MRA images and BP measurements were obtained from patients (n=15, M=8, F=7, Age= 49.2 ± 7.3 years) over a span of 700 days. A novel segmentation algorithm was developed to identify brain vasculature from surrounding tissue. The data was processed to calculate the vascular probability distribution function (PDF); a measure of the vascular diameters in the brain. The initial (day 0) PDF and final (day 700) PDF were used to correlate the changes in cerebral vasculature and BP. Correlation was determined by a mixed effects linear model analysis. Results: The segmentation algorithm had a 99.9% specificity and 99.7% sensitivity in identifying and delineating cerebral vasculature. The PDFs had a statistically significant correlation to BP changes below the circle of Willis (p-value = 0.0007), but not significant (p-value = 0.53) above the circle of Willis, due to smaller blood vessels. Conclusion: Changes in cerebral vasculature and pressure can be non-invasively obtained through MRA image analysis, which may be a useful tool for clinicians to optimize medical management of HBP

    Computational methods for the analysis of functional 4D-CT chest images.

    Get PDF
    Medical imaging is an important emerging technology that has been intensively used in the last few decades for disease diagnosis and monitoring as well as for the assessment of treatment effectiveness. Medical images provide a very large amount of valuable information that is too huge to be exploited by radiologists and physicians. Therefore, the design of computer-aided diagnostic (CAD) system, which can be used as an assistive tool for the medical community, is of a great importance. This dissertation deals with the development of a complete CAD system for lung cancer patients, which remains the leading cause of cancer-related death in the USA. In 2014, there were approximately 224,210 new cases of lung cancer and 159,260 related deaths. The process begins with the detection of lung cancer which is detected through the diagnosis of lung nodules (a manifestation of lung cancer). These nodules are approximately spherical regions of primarily high density tissue that are visible in computed tomography (CT) images of the lung. The treatment of these lung cancer nodules is complex, nearly 70% of lung cancer patients require radiation therapy as part of their treatment. Radiation-induced lung injury is a limiting toxicity that may decrease cure rates and increase morbidity and mortality treatment. By finding ways to accurately detect, at early stage, and hence prevent lung injury, it will have significant positive consequences for lung cancer patients. The ultimate goal of this dissertation is to develop a clinically usable CAD system that can improve the sensitivity and specificity of early detection of radiation-induced lung injury based on the hypotheses that radiated lung tissues may get affected and suffer decrease of their functionality as a side effect of radiation therapy treatment. These hypotheses have been validated by demonstrating that automatic segmentation of the lung regions and registration of consecutive respiratory phases to estimate their elasticity, ventilation, and texture features to provide discriminatory descriptors that can be used for early detection of radiation-induced lung injury. The proposed methodologies will lead to novel indexes for distinguishing normal/healthy and injured lung tissues in clinical decision-making. To achieve this goal, a CAD system for accurate detection of radiation-induced lung injury that requires three basic components has been developed. These components are the lung fields segmentation, lung registration, and features extraction and tissue classification. This dissertation starts with an exploration of the available medical imaging modalities to present the importance of medical imaging in today’s clinical applications. Secondly, the methodologies, challenges, and limitations of recent CAD systems for lung cancer detection are covered. This is followed by introducing an accurate segmentation methodology of the lung parenchyma with the focus of pathological lungs to extract the volume of interest (VOI) to be analyzed for potential existence of lung injuries stemmed from the radiation therapy. After the segmentation of the VOI, a lung registration framework is introduced to perform a crucial and important step that ensures the co-alignment of the intra-patient scans. This step eliminates the effects of orientation differences, motion, breathing, heart beats, and differences in scanning parameters to be able to accurately extract the functionality features for the lung fields. The developed registration framework also helps in the evaluation and gated control of the radiotherapy through the motion estimation analysis before and after the therapy dose. Finally, the radiation-induced lung injury is introduced, which combines the previous two medical image processing and analysis steps with the features estimation and classification step. This framework estimates and combines both texture and functional features. The texture features are modeled using the novel 7th-order Markov Gibbs random field (MGRF) model that has the ability to accurately models the texture of healthy and injured lung tissues through simultaneously accounting for both vertical and horizontal relative dependencies between voxel-wise signals. While the functionality features calculations are based on the calculated deformation fields, obtained from the 4D-CT lung registration, that maps lung voxels between successive CT scans in the respiratory cycle. These functionality features describe the ventilation, the air flow rate, of the lung tissues using the Jacobian of the deformation field and the tissues’ elasticity using the strain components calculated from the gradient of the deformation field. Finally, these features are combined in the classification model to detect the injured parts of the lung at an early stage and enables an earlier intervention

    Automatic Affine and Elastic Registration Strategies for Multi-dimensional Medical Images

    Get PDF
    Medical images have been used increasingly for diagnosis, treatment planning, monitoring disease processes, and other medical applications. A large variety of medical imaging modalities exists including CT, X-ray, MRI, Ultrasound, etc. Frequently a group of images need to be compared to one another and/or combined for research or cumulative purposes. In many medical studies, multiple images are acquired from subjects at different times or with different imaging modalities. Misalignment inevitably occurs, causing anatomical and/or functional feature shifts within the images. Computerized image registration (alignment) approaches can offer automatic and accurate image alignments without extensive user involvement and provide tools for visualizing combined images. This dissertation focuses on providing automatic image registration strategies. After a through review of existing image registration techniques, we identified two registration strategies that enhance the current field: (1) an automated rigid body and affine registration using voxel similarity measurements based on a sequential hybrid genetic algorithm, and (2) an automated deformable registration approach based upon a linear elastic finite element formulation. Both methods streamlined the registration process. They are completely automatic and require no user intervention. The proposed registration strategies were evaluated with numerous 2D and 3D MR images with a variety of tissue structures, orientations and dimensions. Multiple registration pathways were provided with guidelines for their applications. The sequential genetic algorithm mimics the pathway of an expert manually doing registration. Experiments demonstrated that the sequential genetic algorithm registration provides high alignment accuracy and is reliable for brain tissues. It avoids local minima/maxima traps of conventional optimization techniques, and does not require any preprocessing such as threshold, smoothing, segmentation, or definition of base points or edges. The elastic model was shown to be highly effective to accurately align areas of interest that are automatically extracted from the images, such as brains. Using a finite element method to get the displacement of each element node by applying a boundary mapping, this method provides an accurate image registration with excellent boundary alignment of each pair of slices and consequently align the entire volume automatically. This dissertation presented numerous volume alignments. Surface geometries were created directly from the aligned segmented images using the Multiple Material Marching Cubes algorithm. Using the proposed registration strategies, multiple subjects were aligned to a standard MRI reference, which is aligned to a segmented reference atlas. Consequently, multiple subjects are aligned to the segmented atlas and a full fMRI analysis is possible

    Improving the Accuracy of CT-derived Attenuation Correction in Respiratory-Gated PET/CT Imaging

    Get PDF
    The effect of respiratory motion on attenuation correction in Fludeoxyglucose (18F) positron emission tomography (FDG-PET) was investigated. Improvements to the accuracy of computed tomography (CT) derived attenuation correction were obtained through the alignment of the attenuation map to each emission image in a respiratory gated PET scan. Attenuation misalignment leads to artefacts in the reconstructed PET image and several methods were devised for evaluating the attenuation inaccuracies caused by this. These methods of evaluation were extended to finding the frame in the respiratory gated PET which best matched the CT. This frame was then used as a reference frame in mono-modality compensation for misalignment. Attenuation correction was found to affect the quantification of tumour volumes; thus a regional analysis was used to evaluate the impact of mismatch and the benefits of compensating for misalignment. Deformable image registration was used to compensate for misalignment, however, there were inaccuracies caused by the poor signal-to-noise ratio (SNR) in PET images. Two models were developed that were robust to a poor SNR allowing for the estimation of deformation from very noisy images. Firstly, a cross population model was developed by statistically analysing the respiratory motion in 10 4DCT scans. Secondly, a 1D model of respiration was developed based on the physiological function of respiration. The 1D approach correctly modelled the expansion and contraction of the lungs and the differences in the compressibility of lungs and surrounding tissues. Several additional models were considered but were ruled out based on their poor goodness of fit to 4DCT scans. Approaches to evaluating the developed models were also used to assist with optimising for the most accurate attenuation correction. It was found that the multimodality registration of the CT image to the PET image was the most accurate approach to compensating for attenuation correction mismatch. Mono-modality image registration was found to be the least accurate approach, however, incorporating a motion model improved the accuracy of image registration. The significance of these findings is twofold. Firstly, it was found that motion models are required to improve the accuracy in compensating for attenuation correction mismatch and secondly, a validation method was found for comparing approaches to compensating for attenuation mismatch
    corecore