363,811 research outputs found

    Building an Expert System for Evaluation of Commercial Cloud Services

    Full text link
    Commercial Cloud services have been increasingly supplied to customers in industry. To facilitate customers' decision makings like cost-benefit analysis or Cloud provider selection, evaluation of those Cloud services are becoming more and more crucial. However, compared with evaluation of traditional computing systems, more challenges will inevitably appear when evaluating rapidly-changing and user-uncontrollable commercial Cloud services. This paper proposes an expert system for Cloud evaluation that addresses emerging evaluation challenges in the context of Cloud Computing. Based on the knowledge and data accumulated by exploring the existing evaluation work, this expert system has been conceptually validated to be able to give suggestions and guidelines for implementing new evaluation experiments. As such, users can conveniently obtain evaluation experiences by using this expert system, which is essentially able to make existing efforts in Cloud services evaluation reusable and sustainable.Comment: 8 page, Proceedings of the 2012 International Conference on Cloud and Service Computing (CSC 2012), pp. 168-175, Shanghai, China, November 22-24, 201

    EbbRT: a framework for building per-application library operating systems

    Full text link
    Efficient use of high speed hardware requires operating system components be customized to the application work- load. Our general purpose operating systems are ill-suited for this task. We present EbbRT, a framework for constructing per-application library operating systems for cloud applications. The primary objective of EbbRT is to enable high-performance in a tractable and maintainable fashion. This paper describes the design and implementation of EbbRT, and evaluates its ability to improve the performance of common cloud applications. The evaluation of the EbbRT prototype demonstrates memcached, run within a VM, can outperform memcached run on an unvirtualized Linux. The prototype evaluation also demonstrates an 14% performance improvement of a V8 JavaScript engine benchmark, and a node.js webserver that achieves a 50% reduction in 99th percentile latency compared to it run on Linux

    Reporting an Experience on Design and Implementation of e-Health Systems on Azure Cloud

    Full text link
    Electronic Health (e-Health) technology has brought the world with significant transformation from traditional paper-based medical practice to Information and Communication Technologies (ICT)-based systems for automatic management (storage, processing, and archiving) of information. Traditionally e-Health systems have been designed to operate within stovepipes on dedicated networks, physical computers, and locally managed software platforms that make it susceptible to many serious limitations including: 1) lack of on-demand scalability during critical situations; 2) high administrative overheads and costs; and 3) in-efficient resource utilization and energy consumption due to lack of automation. In this paper, we present an approach to migrate the ICT systems in the e-Health sector from traditional in-house Client/Server (C/S) architecture to the virtualised cloud computing environment. To this end, we developed two cloud-based e-Health applications (Medical Practice Management System and Telemedicine Practice System) for demonstrating how cloud services can be leveraged for developing and deploying such applications. The Windows Azure cloud computing platform is selected as an example public cloud platform for our study. We conducted several performance evaluation experiments to understand the Quality Service (QoS) tradeoffs of our applications under variable workload on Azure.Comment: Submitted to third IEEE International Conference on Cloud and Green Computing (CGC 2013

    EbbRT: a customizable operating system for cloud applications

    Full text link
    Efficient use of hardware requires operating system components be customized to the application workload. Our general purpose operating systems are ill-suited for this task. We present Genesis, a new operating system that enables per-application customizations for cloud applications. Genesis achieves this through a novel heterogeneous distributed structure, a partitioned object model, and an event-driven execution environment. This paper describes the design and prototype implementation of Genesis, and evaluates its ability to improve the performance of common cloud applications. The evaluation of the Genesis prototype demonstrates memcached, run within a VM, can outperform memcached run on an unvirtualized Linux. The prototype evaluation also demonstrates an 14% performance improvement of a V8 JavaScript engine benchmark, and a node.js webserver that achieves a 50% reduction in 99th percentile latency compared to it run on Linux
    • …
    corecore