138,789 research outputs found

    Effective Unsupervised Author Disambiguation with Relative Frequencies

    Full text link
    This work addresses the problem of author name homonymy in the Web of Science. Aiming for an efficient, simple and straightforward solution, we introduce a novel probabilistic similarity measure for author name disambiguation based on feature overlap. Using the researcher-ID available for a subset of the Web of Science, we evaluate the application of this measure in the context of agglomeratively clustering author mentions. We focus on a concise evaluation that shows clearly for which problem setups and at which time during the clustering process our approach works best. In contrast to most other works in this field, we are sceptical towards the performance of author name disambiguation methods in general and compare our approach to the trivial single-cluster baseline. Our results are presented separately for each correct clustering size as we can explain that, when treating all cases together, the trivial baseline and more sophisticated approaches are hardly distinguishable in terms of evaluation results. Our model shows state-of-the-art performance for all correct clustering sizes without any discriminative training and with tuning only one convergence parameter.Comment: Proceedings of JCDL 201

    Mining web data for competency management

    Get PDF
    We present CORDER (COmmunity Relation Discovery by named Entity Recognition) an un-supervised machine learning algorithm that exploits named entity recognition and co-occurrence data to associate individuals in an organization with their expertise and associates. We discuss the problems associated with evaluating unsupervised learners and report our initial evaluation experiments

    Relation Discovery from Web Data for Competency Management

    Get PDF
    This paper describes a technique for automatically discovering associations between people and expertise from an analysis of very large data sources (including web pages, blogs and emails), using a family of algorithms that perform accurate named-entity recognition, assign different weights to terms according to an analysis of document structure, and access distances between terms in a document. My contribution is to add a social networking approach called BuddyFinder which relies on associations within a large enterprise-wide "buddy list" to help delimit the search space and also to provide a form of 'social triangulation' whereby the system can discover documents from your colleagues that contain pertinent information about you. This work has been influential in the information retrieval community generally, as it is the basis of a landmark system that achieved overall first place in every category in the Enterprise Search Track of TREC2006

    Computational Approaches to Measuring the Similarity of Short Contexts : A Review of Applications and Methods

    Full text link
    Measuring the similarity of short written contexts is a fundamental problem in Natural Language Processing. This article provides a unifying framework by which short context problems can be categorized both by their intended application and proposed solution. The goal is to show that various problems and methodologies that appear quite different on the surface are in fact very closely related. The axes by which these categorizations are made include the format of the contexts (headed versus headless), the way in which the contexts are to be measured (first-order versus second-order similarity), and the information used to represent the features in the contexts (micro versus macro views). The unifying thread that binds together many short context applications and methods is the fact that similarity decisions must be made between contexts that share few (if any) words in common.Comment: 23 page
    • …
    corecore