4,405 research outputs found

    Design and Evaluation of a Hardware System for Online Signal Processing within Mobile Brain-Computer Interfaces

    Get PDF
    Brain-Computer Interfaces (BCIs) sind innovative Systeme, die eine direkte Kommunikation zwischen dem Gehirn und externen GerĂ€ten ermöglichen. Diese Schnittstellen haben sich zu einer transformativen Lösung nicht nur fĂŒr Menschen mit neurologischen Verletzungen entwickelt, sondern auch fĂŒr ein breiteres Spektrum von Menschen, das sowohl medizinische als auch nicht-medizinische Anwendungen umfasst. In der Vergangenheit hat die Herausforderung, dass neurologische Verletzungen nach einer anfĂ€nglichen Erholungsphase statisch bleiben, die Forscher dazu veranlasst, innovative Wege zu beschreiten. Seit den 1970er Jahren stehen BCIs an vorderster Front dieser BemĂŒhungen. Mit den Fortschritten in der Forschung haben sich die BCI-Anwendungen erweitert und zeigen ein großes Potenzial fĂŒr eine Vielzahl von Anwendungen, auch fĂŒr weniger stark eingeschrĂ€nkte (zum Beispiel im Kontext von Hörelektronik) sowie völlig gesunde Menschen (zum Beispiel in der Unterhaltungsindustrie). Die Zukunft der BCI-Forschung hĂ€ngt jedoch auch von der VerfĂŒgbarkeit zuverlĂ€ssiger BCI-Hardware ab, die den Einsatz in der realen Welt gewĂ€hrleistet. Das im Rahmen dieser Arbeit konzipierte und implementierte CereBridge-System stellt einen bedeutenden Fortschritt in der Brain-Computer-Interface-Technologie dar, da es die gesamte Hardware zur Erfassung und Verarbeitung von EEG-Signalen in ein mobiles System integriert. Die Architektur der Verarbeitungshardware basiert auf einem FPGA mit einem ARM Cortex-M3 innerhalb eines heterogenen ICs, was FlexibilitĂ€t und Effizienz bei der EEG-Signalverarbeitung gewĂ€hrleistet. Der modulare Aufbau des Systems, bestehend aus drei einzelnen Boards, gewĂ€hrleistet die Anpassbarkeit an unterschiedliche Anforderungen. Das komplette System wird an der Kopfhaut befestigt, kann autonom arbeiten, benötigt keine externe Interaktion und wiegt einschließlich der 16-Kanal-EEG-Sensoren nur ca. 56 g. Der Fokus liegt auf voller MobilitĂ€t. Das vorgeschlagene anpassbare Datenflusskonzept erleichtert die Untersuchung und nahtlose Integration von Algorithmen und erhöht die FlexibilitĂ€t des Systems. Dies wird auch durch die Möglichkeit unterstrichen, verschiedene Algorithmen auf EEG-Daten anzuwenden, um unterschiedliche Anwendungsziele zu erreichen. High-Level Synthesis (HLS) wurde verwendet, um die Algorithmen auf das FPGA zu portieren, was den Algorithmenentwicklungsprozess beschleunigt und eine schnelle Implementierung von Algorithmusvarianten ermöglicht. Evaluierungen haben gezeigt, dass das CereBridge-System in der Lage ist, die gesamte Signalverarbeitungskette zu integrieren, die fĂŒr verschiedene BCI-Anwendungen erforderlich ist. DarĂŒber hinaus kann es mit einer Batterie von mehr als 31 Stunden Dauerbetrieb betrieben werden, was es zu einer praktikablen Lösung fĂŒr mobile Langzeit-EEG-Aufzeichnungen und reale BCI-Studien macht. Im Vergleich zu bestehenden Forschungsplattformen bietet das CereBridge-System eine bisher unerreichte LeistungsfĂ€higkeit und Ausstattung fĂŒr ein mobiles BCI. Es erfĂŒllt nicht nur die relevanten Anforderungen an ein mobiles BCI-System, sondern ebnet auch den Weg fĂŒr eine schnelle Übertragung von Algorithmen aus dem Labor in reale Anwendungen. Im Wesentlichen liefert diese Arbeit einen umfassenden Entwurf fĂŒr die Entwicklung und Implementierung eines hochmodernen mobilen EEG-basierten BCI-Systems und setzt damit einen neuen Standard fĂŒr BCI-Hardware, die in der Praxis eingesetzt werden kann.Brain-Computer Interfaces (BCIs) are innovative systems that enable direct communication between the brain and external devices. These interfaces have emerged as a transformative solution not only for individuals with neurological injuries, but also for a broader range of individuals, encompassing both medical and non-medical applications. Historically, the challenge of neurological injury being static after an initial recovery phase has driven researchers to explore innovative avenues. Since the 1970s, BCIs have been at one forefront of these efforts. As research has progressed, BCI applications have expanded, showing potential in a wide range of applications, including those for less severely disabled (e.g. in the context of hearing aids) and completely healthy individuals (e.g. entertainment industry). However, the future of BCI research also depends on the availability of reliable BCI hardware to ensure real-world application. The CereBridge system designed and implemented in this work represents a significant leap forward in brain-computer interface technology by integrating all EEG signal acquisition and processing hardware into a mobile system. The processing hardware architecture is centered around an FPGA with an ARM Cortex-M3 within a heterogeneous IC, ensuring flexibility and efficiency in EEG signal processing. The modular design of the system, consisting of three individual boards, ensures adaptability to different requirements. With a focus on full mobility, the complete system is mounted on the scalp, can operate autonomously, requires no external interaction, and weighs approximately 56g, including 16 channel EEG sensors. The proposed customizable dataflow concept facilitates the exploration and seamless integration of algorithms, increasing the flexibility of the system. This is further underscored by the ability to apply different algorithms to recorded EEG data to meet different application goals. High-Level Synthesis (HLS) was used to port algorithms to the FPGA, accelerating the algorithm development process and facilitating rapid implementation of algorithm variants. Evaluations have shown that the CereBridge system is capable of integrating the complete signal processing chain required for various BCI applications. Furthermore, it can operate continuously for more than 31 hours with a 1800mAh battery, making it a viable solution for long-term mobile EEG recording and real-world BCI studies. Compared to existing research platforms, the CereBridge system offers unprecedented performance and features for a mobile BCI. It not only meets the relevant requirements for a mobile BCI system, but also paves the way for the rapid transition of algorithms from the laboratory to real-world applications. In essence, this work provides a comprehensive blueprint for the development and implementation of a state-of-the-art mobile EEG-based BCI system, setting a new benchmark in BCI hardware for real-world applicability

    An indigenous perspective on institutions for sustainable business in China

    Get PDF

    UMSL Bulletin 2023-2024

    Get PDF
    The 2023-2024 Bulletin and Course Catalog for the University of Missouri St. Louis.https://irl.umsl.edu/bulletin/1088/thumbnail.jp

    Multidisciplinary perspectives on Artificial Intelligence and the law

    Get PDF
    This open access book presents an interdisciplinary, multi-authored, edited collection of chapters on Artificial Intelligence (‘AI’) and the Law. AI technology has come to play a central role in the modern data economy. Through a combination of increased computing power, the growing availability of data and the advancement of algorithms, AI has now become an umbrella term for some of the most transformational technological breakthroughs of this age. The importance of AI stems from both the opportunities that it offers and the challenges that it entails. While AI applications hold the promise of economic growth and efficiency gains, they also create significant risks and uncertainty. The potential and perils of AI have thus come to dominate modern discussions of technology and ethics – and although AI was initially allowed to largely develop without guidelines or rules, few would deny that the law is set to play a fundamental role in shaping the future of AI. As the debate over AI is far from over, the need for rigorous analysis has never been greater. This book thus brings together contributors from different fields and backgrounds to explore how the law might provide answers to some of the most pressing questions raised by AI. An outcome of the Católica Research Centre for the Future of Law and its interdisciplinary working group on Law and Artificial Intelligence, it includes contributions by leading scholars in the fields of technology, ethics and the law.info:eu-repo/semantics/publishedVersio

    Running to Your Own Beat:An Embodied Approach to Auditory Display Design

    Get PDF
    Personal fitness trackers represent a multi-billion-dollar industry, predicated on devices for assisting users in achieving their health goals. However, most current products only offer activity tracking and measurement of performance metrics, which do not ultimately address the need for technique related assistive feedback in a cost-effective way. Addressing this gap in the design space for assistive run training interfaces is also crucial in combating the negative effects of Forward Head Position, a condition resulting from mobile device use, with a rapid growth of incidence in the population. As such, Auditory Displays (AD) offer an innovative set of tools for creating such a device for runners. ADs present the opportunity to design interfaces which allow natural unencumbered motion, detached from the mobile or smartwatch screen, thus making them ideal for providing real-time assistive feedback for correcting head posture during running. However, issues with AD design have centred around overall usability and user-experience, therefore, in this thesis an ecological and embodied approach to AD design is presented as a vehicle for designing an assistive auditory interface for runners, which integrates seamlessly into their everyday environments

    Communicating a Pandemic

    Get PDF
    This edited volume compares experiences of how the Covid-19 pandemic was communicated in the Nordic countries – Denmark, Finland, Iceland, Norway, and Sweden. The Nordic countries are often discussed in terms of similarities concerning an extensive welfare system, economic policies, media systems, and high levels of trust in societal actors. However, in the wake of a global pandemic, the countries’ coping strategies varied, creating certain question marks on the existence of a “Nordic model”. The chapters give a broad overview of crisis communication in the Nordic countries during the first year of the Covid-19 pandemic by combining organisational and societal theoretical perspectives and encompassing crisis response from governments, public health authorities, lobbyists, corporations, news media, and citizens. The results show several similarities, such as political and governmental responses highlighting solidarity and the need for exceptional measures, as expressed in press conferences, social media posts, information campaigns, and speeches. The media coverage relied on experts and was mainly informative, with few critical investigations during the initial phases. Moreover, surveys and interviews show the importance of news media for citizens’ coping strategies, but also that citizens mostly trusted both politicians and health authorities during the crisis. This book is of interest to all who are looking to understand societal crisis management on a comprehensive level. The volume contains chapters from leading experts from all the Nordic countries and is edited by a team with complementary expertise on crisis communication, political communication, and journalism, consisting of Bengt Johansson, Øyvind Ihlen, Jenny Lindholm, and Mark Blach-Ørsten. Publishe

    Air Quality Research Using Remote Sensing

    Get PDF
    Air pollution is a worldwide environmental hazard that poses serious consequences not only for human health and the climate but also for agriculture, ecosystems, and cultural heritage, among other factors. According to the WHO, there are 8 million premature deaths every year as a result of exposure to ambient air pollution. In addition, more than 90% of the world’s population live in areas where the air quality is poor, exceeding the recommended limits. On the other hand, air pollution and the climate co-influence one another through complex physicochemical interactions in the atmosphere that alter the Earth’s energy balance and have implications for climate change and the air quality. It is important to measure specific atmospheric parameters and pollutant compound concentrations, monitor their variations, and analyze different scenarios with the aim of assessing the air pollution levels and developing early warning and forecast systems as a means of improving the air quality and safeguarding public health. Such measures can also form part of efforts to achieve a reduction in the number of air pollution casualties and mitigate climate change phenomena. This book contains contributions focusing on remote sensing techniques for evaluating air quality, including the use of in situ data, modeling approaches, and the synthesis of different instrumentations and techniques. The papers published in this book highlight the importance and relevance of air quality studies and the potential of remote sensing, particularly that conducted from Earth observation platforms, to shed light on this topic

    Natural and Technological Hazards in Urban Areas

    Get PDF
    Natural hazard events and technological accidents are separate causes of environmental impacts. Natural hazards are physical phenomena active in geological times, whereas technological hazards result from actions or facilities created by humans. In our time, combined natural and man-made hazards have been induced. Overpopulation and urban development in areas prone to natural hazards increase the impact of natural disasters worldwide. Additionally, urban areas are frequently characterized by intense industrial activity and rapid, poorly planned growth that threatens the environment and degrades the quality of life. Therefore, proper urban planning is crucial to minimize fatalities and reduce the environmental and economic impacts that accompany both natural and technological hazardous events

    Conversations on Empathy

    Get PDF
    In the aftermath of a global pandemic, amidst new and ongoing wars, genocide, inequality, and staggering ecological collapse, some in the public and political arena have argued that we are in desperate need of greater empathy — be this with our neighbours, refugees, war victims, the vulnerable or disappearing animal and plant species. This interdisciplinary volume asks the crucial questions: How does a better understanding of empathy contribute, if at all, to our understanding of others? How is it implicated in the ways we perceive, understand and constitute others as subjects? Conversations on Empathy examines how empathy might be enacted and experienced either as a way to highlight forms of otherness or, instead, to overcome what might otherwise appear to be irreducible differences. It explores the ways in which empathy enables us to understand, imagine and create sameness and otherness in our everyday intersubjective encounters focusing on a varied range of "radical others" – others who are perceived as being dramatically different from oneself. With a focus on the importance of empathy to understand difference, the book contends that the role of empathy is critical, now more than ever, for thinking about local and global challenges of interconnectedness, care and justice

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum
    • 

    corecore