141 research outputs found

    Evaluating the Utility of Media–Dependent FEC in VoIP Flows

    Full text link

    Impact of large block FEC with different queue sizes of drop tail and RED queue policy on video streaming quality over internet

    Get PDF
    In this paper, we report an investigation on the impact of large block Forward Error Correction (FEC) with Drop Tail (DT) and Random Early Detection (RED) queue policies on network performance and quality of video streaming.FEC is a technique that uses redundant packets to reconstruct dropped packets, while DT and RED are the most popular queue management policies used in network routers.DT mainly depends on the size of the queue buffer to decide on whether to drop a packet or not.RED monitors the average queue size and drops arriving packets probabilistically.The probability of dropping a packet increases as the estimated average queue size grows.In the investigation, we consider simulation settings with varying size of queue buffers.Results obtained from the simulation experiments show that large block FEC and queue size affect the performance the network.Consequently, the qualities of multimedia applications are also affected

    Reducing Internet Latency : A Survey of Techniques and their Merit

    Get PDF
    Bob Briscoe, Anna Brunstrom, Andreas Petlund, David Hayes, David Ros, Ing-Jyh Tsang, Stein Gjessing, Gorry Fairhurst, Carsten Griwodz, Michael WelzlPeer reviewedPreprin

    Real Time System Development with UML: A Case Study

    Get PDF
    In this thesis we look at the challenges regarding VoIP and to the developer of an application providing this service. We explore CASE tools that can be used to model and verify the design of a VoIP application. VoIP applications will not be accepted by the market unless it is able to provide an audio quality comparable to traditional phones. The voice module of the application that we analyse initially did not meet these requirements. We investigate how the design and implementation must be altered to meet them. Although UML in its current specification is not adapted to the design of real-time applications, CASE tools exist that propose an extension of UML for this purpose. We investigate two of these - Rational Rose RT and Telelogic Tau - for their usefulness in re-engineering the application. We show their support partially covers our needs and we present novel UML concepts that would have been useful in resolving our task. We further demonstrate important new concepts of UML 2.0

    Optimizing Mobile Application Performance through Network Infrastructure Aware Adaptation.

    Full text link
    Encouraged by the fast adoption of mobile devices and the widespread deployment of mobile networks, mobile applications are becoming the preferred “gateways” connecting users to networking services. Although the CPU capability of mobile devices is approaching that of off-the-shelf PCs, the performance of mobile networking applications is still far behind. One of the fundamental reasons is that most mobile applications are unaware of the mobile network specific characteristics, leading to inefficient network and device resource utilization. Thus, in order to improve the user experience for most mobile applications, it is essential to dive into the critical network components along network connections including mobile networks, smartphone platforms, mobile applications, and content partners. We aim to optimize the performance of mobile network applications through network-aware resource adaptation approaches. Our techniques consist of the following four aspects: (i) revealing the fundamental infrastructure characteristics of cellular networks that are distinctive from wireline networks; (ii) isolating the impact of important factors on user perceived performance in mobile network applications; (iii) determining the particular usage patterns of mobile applications; and (iv) improving the performance of mobile applications through network aware adaptations.PhDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/99829/1/qiangxu_1.pd

    Managing Shared Access to a Spectrum Commons

    Get PDF
    The open access, unlicensed or spectrum commons approach to managing shared access to RF spectrum offers many attractive benefits, especially when implemented in conjunction with and as a complement to a regime of marketbased, flexible use, tradable licensed spectrum ([Benkler02], [Lehr04], [Werbach03]). However, as a number of critics have pointed out, implementing the unlicensed model poses difficult challenges that have not been well-addressed yet by commons advocates ([Benjam03], [Faulhab05], [Goodman04], [Hazlett01]). A successful spectrum commons will not be unregulated, but it also need not be command & control by another name. This paper seeks to address some of the implementation challenges associated with managing a spectrum commons. We focus on the minimal set of features that we believe a suitable management protocol, etiquette, or framework for a spectrum commons will need to incorporate. This includes: (1) No transmit only devices; (2) Power restrictions; (3) Common channel signaling; (4) Mechanism for handling congestion and allocating resources among users/uses in times of congestion; (5) Mechanism to support enforcement (e.g., established procedures to verify protocol is in conformance); (6) Mechanism to support reversibility of policy; and (7) Protection for privacy and security. We explain why each is necessary, examine their implications for current policy, and suggest ways in which they might be implemented. We present a framework that suggests a set of design principles for the protocols that will govern a successful commons management regime. Our design rules lead us to conclude that the appropriate Protocols for a Commons will need to be more liquid ([Reed05]) than in the past: (1) Marketbased instead of C&C; (2) Decentralized/distributed; and, (3) Adaptive and flexible (Anonymous, distributed, decentralized, and locally responsive)

    Cross-Layer Capacity Optimization In OFDMA Systems: WiMAX And LTE

    Get PDF
    Given the broad range of applications supported, high data rate required and low latency promised; dynamic radio resource management is becoming vital for newly emerging air interface technologies such as wireless interoperability for microwave access (Wimax) and long term evolution (lte) adopted by international standards. This thesis considers orthogonal frequency division multiple access (ofdma) system, which has been implemented in both Wimax and lte technologies as their air interface multiple access mechanism. A framework for optimized resource allocation with quality of service (qos) support that aims to balance between service provider\u27s revenue and subscriber\u27s satisfaction is proposed. A cross-layer optimization design for subchannel, for Wimax, and physical resource block (prb), for lte, and power allocations with the objective of maximizing the capacity (in bits/symbol/hz) subject to fairness parameters and qos requirements as constraints is presented. An adaptive modulation and coding (amc)-based cross-layer scheme has also been proposed in this thesis by adopting an amc scheme together with the cross-layer scheme to realize a more practical and viable resource allocation. The optimization does not only consider users channel conditions but also queue status of each user as well as different qos requirements. In the proposed framework, the problem of power allocation is solved analytically while the subchannel/prb allocation is solved using integer programming exhaustive search. The simulation and numerical results obtained in this thesis have shown improved system performance as compared to other optimization schemes known in literature
    • 

    corecore