321 research outputs found

    Improving cache locality for thread-level speculation

    Full text link

    How Multithreading Addresses the Memory Wall

    Get PDF
    The memory wall is the predicted situation where improvements to processor speed will be masked by the much slower improvement in dynamic random access (DRAM) memory speed. Since the prediction was made in 1995, considerable progress has been made in addressing the memory wall. There have been advances in DRAM organization, improved approaches to memory hierarchy have been proposed, integrating DRAM onto the processor chip has been investigated and alternative approaches to organizing the instruction stream have been researched. All of these approaches contribute to reducing the predicted memory wall effect; some can potentially be combined. This paper reviews several approaches with a view to assessing the most promising option. Given the growing CPU-DRAM speed gap, any strategy which finds alternative work while waiting for DRAM is likely to be a win

    Computation Enhancement using Reconfigurable Computing

    Get PDF
    In light of the industry’s constant need for better computer performance, this project aims to choose and evaluate an approach for facing this issue. The targeted category of computers is single board computers (e.g. Raspberry Pi). The approach utilized for enhancing performance is the use of reconfigurable computing as to execute computationally expensive calculations on a runtime custom-tailored hardware. The objective of this project is the test of the potential this approach has for increasing computers performance through comparing a software implementation of an algorithm with an FPGA assisted implementation of the same algorithm. The platforms chosen for this project are the Rapsberry Pi and the Parallella P1602 board with its Zynq SoC for the software implementation and the FPGA assisted implementation in that order. The chosen algorithm is Fourier Fast Transform due to its part in many DSP applications and its suitability for the project objective. While the software solution worked successfully resulting in an asymptotic cost of O(N log N); the reconfigurable computing solution couldn’t be completed due to time constraints and lack of experience of the student. Future work should complete the experiment and add a multicore implementation of the same algorithm to add yet another class to the comparison
    • …
    corecore