3 research outputs found

    Energy efficiency in wireless networks

    Get PDF
    Energy is a critical resource in the design of wireless networks since wireless devices are usually powered by batteries. Battery capacity is finite and the progress of battery technology is very slow, with capacity expected to make little improvement in the near future. Under these conditions, many techniques for conserving power have been proposed to increase battery life. In this dissertation we consider two approaches to conserving the energy consumed by a wireless network interface. One technique is to use power saving mode, which allows a node to power off its wireless network interface (or enter a doze state) to reduce energy consumption. The other is to use a technique that suitably varies transmission power to reduce energy consumption. These two techniques are closely related to theMAC (Medium Access Control) layer. With respect to power saving mode, we study IEEE 802.11 PSM (Power Saving Mechanism) and propose a scheme that improves its energy efficiency. We also investigate the interaction between power saving mode and TCP (Transport Control Protocol). As a second approach to conserving energy, we investigate a simple power control protocol, called BASIC, which uses the maximum transmission power for RTS-CTS and the minimum necessary power for DATA-ACK. We identify the deficiency of BASIC, which increases collisions and degrades network throughput, and propose a power control protocol that addresses these problems and achieves energy savings. Since energy conservation is not an issue limited to one layer of the protocol stack, we study a cross layer design that combines power control at the MAC layer and power aware routing at the network layer. One poweraware routing metric is minimizing the aggregate transmission power on a path from source to destination. This metric has been used along with BASIC-like power control under the assumption that it can save energy, which we show to be false. Also, we show that the power aware routing metric leads to a lower throughput. We show that using the shortest number of hops in conjunction with BASIC-like power control conserves more energy than power aware routing with BASIC-like power control

    Channel Access Management in Data Intensive Sensor Networks

    Get PDF
    There are considerable challenges for channel access in Data Intensive Sensor Networks - DISN, supporting Data Intensive Applications like Structural Health Monitoring. As the data load increases, considerable degradation of the key performance parameters of such sensor networks is observed. Successful packet delivery ratio drops due to frequent collisions and retransmissions. The data glut results in increased latency and energy consumption overall. With the considerable limitations on sensor node resources like battery power, this implies that excessive transmissions in response to sensor queries can lead to premature network death. After a certain load threshold the performance characteristics of traditional WSNs become unacceptable. Research work indicates that successful packet delivery ratio in 802.15.4 networks can drop from 95% to 55% as the offered network load increases from 1 packet/sec to 10 packets/sec. This result in conjunction with the fact that it is common for sensors in an SHM system to generate 6-8 packets/sec of vibration data makes it important to design appropriate channel access schemes for such data intensive applications.In this work, we address the problem of significant performance degradation in a special-purpose DISN. Our specific focus is on the medium access control layer since it gives a fine-grained control on managing channel access and reducing energy waste. The goal of this dissertation is to design and evaluate a suite of channel access schemes that ensure graceful performance degradation in special-purpose DISNs as the network traffic load increases.First, we present a case study that investigates two distinct MAC proposals based on random access and scheduling access. The results of the case study provide the motivation to develop hybrid access schemes. Next, we introduce novel hybrid channel access protocols for DISNs ranging from a simple randomized transmission scheme that is robust under channel and topology dynamics to one that utilizes limited topological information about neighboring sensors to minimize collisions and energy waste. The protocols combine randomized transmission with heuristic scheduling to alleviate network performance degradation due to excessive collisions and retransmissions. We then propose a grid-based access scheduling protocol for a mobile DISN that is scalable and decentralized. The grid-based protocol efficiently handles sensor mobility with acceptable data loss and limited overhead. Finally, we extend the randomized transmission protocol from the hybrid approaches to develop an adaptable probability-based data transmission method. This work combines probabilistic transmission with heuristics, i.e., Latin Squares and a grid network, to tune transmission probabilities of sensors, thus meeting specific performance objectives in DISNs. We perform analytical evaluations and run simulation-based examinations to test all of the proposed protocols
    corecore