60,754 research outputs found

    Contours of Inclusion: Inclusive Arts Teaching and Learning

    Get PDF
    The purpose of this publication is to share models and case examples of the process of inclusive arts curriculum design and evaluation. The first section explains the conceptual and curriculum frameworks that were used in the analysis and generation of the featured case studies (i.e. Understanding by Design, Differentiated Instruction, and Universal Design for Learning). Data for the cases studies was collected from three urban sites (i.e. Los Angeles, San Francisco, and Boston) and included participant observations, student and teacher interviews, curriculum documentation, digital documentation of student learning, and transcripts from discussion forum and teleconference discussions from a professional learning community.The initial case studies by Glass and Barnum use the curricular frameworks to analyze and understand what inclusive practices look like in two case studies of arts-in-education programs that included students with disabilities. The second set of precedent case studies by Kronenberg and Blair, and Jenkins and Agois Hurel uses the frameworks to explain their process of including students by providing flexible arts learning options to support student learning of content standards. Both sets of case studies illuminate curricular design decisions and instructional strategies that supported the active engagement and learning of students with disabilities in educational settings shared with their peers. The second set of cases also illustrate the reflective process of using frameworks like Universal Design for Learning (UDL) to guide curricular design, responsive instructional differentiation, and the use of the arts as a rich, meaningful, and engaging option to support learning. Appended are curriculum design and evaluation tools. (Individual chapters contain references.

    Automatic Differentiation of Algorithms for Machine Learning

    Get PDF
    Automatic differentiation---the mechanical transformation of numeric computer programs to calculate derivatives efficiently and accurately---dates to the origin of the computer age. Reverse mode automatic differentiation both antedates and generalizes the method of backwards propagation of errors used in machine learning. Despite this, practitioners in a variety of fields, including machine learning, have been little influenced by automatic differentiation, and make scant use of available tools. Here we review the technique of automatic differentiation, describe its two main modes, and explain how it can benefit machine learning practitioners. To reach the widest possible audience our treatment assumes only elementary differential calculus, and does not assume any knowledge of linear algebra.Comment: 7 pages, 1 figur

    Automatic differentiation in machine learning: a survey

    Get PDF
    Derivatives, mostly in the form of gradients and Hessians, are ubiquitous in machine learning. Automatic differentiation (AD), also called algorithmic differentiation or simply "autodiff", is a family of techniques similar to but more general than backpropagation for efficiently and accurately evaluating derivatives of numeric functions expressed as computer programs. AD is a small but established field with applications in areas including computational fluid dynamics, atmospheric sciences, and engineering design optimization. Until very recently, the fields of machine learning and AD have largely been unaware of each other and, in some cases, have independently discovered each other's results. Despite its relevance, general-purpose AD has been missing from the machine learning toolbox, a situation slowly changing with its ongoing adoption under the names "dynamic computational graphs" and "differentiable programming". We survey the intersection of AD and machine learning, cover applications where AD has direct relevance, and address the main implementation techniques. By precisely defining the main differentiation techniques and their interrelationships, we aim to bring clarity to the usage of the terms "autodiff", "automatic differentiation", and "symbolic differentiation" as these are encountered more and more in machine learning settings.Comment: 43 pages, 5 figure

    Responsible research and innovation in science education: insights from evaluating the impact of using digital media and arts-based methods on RRI values

    Get PDF
    The European Commission policy approach of Responsible Research and Innovation (RRI) is gaining momentum in European research planning and development as a strategy to align scientific and technological progress with socially desirable and acceptable ends. One of the RRI agendas is science education, aiming to foster future generations' acquisition of skills and values needed to engage in society responsibly. To this end, it is argued that RRI-based science education can benefit from more interdisciplinary methods such as those based on arts and digital technologies. However, the evidence existing on the impact of science education activities using digital media and arts-based methods on RRI values remains underexplored. This article comparatively reviews previous evidence on the evaluation of these activities, from primary to higher education, to examine whether and how RRI-related learning outcomes are evaluated and how these activities impact on students' learning. Forty academic publications were selected and its content analysed according to five RRI values: creative and critical thinking, engagement, inclusiveness, gender equality and integration of ethical issues. When evaluating the impact of digital and arts-based methods in science education activities, creative and critical thinking, engagement and partly inclusiveness are the RRI values mainly addressed. In contrast, gender equality and ethics integration are neglected. Digital-based methods seem to be more focused on students' questioning and inquiry skills, whereas those using arts often examine imagination, curiosity and autonomy. Differences in the evaluation focus between studies on digital media and those on arts partly explain differences in their impact on RRI values, but also result in non-documented outcomes and undermine their potential. Further developments in interdisciplinary approaches to science education following the RRI policy agenda should reinforce the design of the activities as well as procedural aspects of the evaluation research

    XBioSiP: A Methodology for Approximate Bio-Signal Processing at the Edge

    Full text link
    Bio-signals exhibit high redundancy, and the algorithms for their processing are inherently error resilient. This property can be leveraged to improve the energy-efficiency of IoT-Edge (wearables) through the emerging trend of approximate computing. This paper presents XBioSiP, a novel methodology for approximate bio-signal processing that employs two quality evaluation stages, during the pre-processing and bio-signal processing stages, to determine the approximation parameters. It thereby achieves high energy savings while satisfying the user-determined quality constraint. Our methodology achieves, up to 19x and 22x reduction in the energy consumption of a QRS peak detection algorithm for 0% and <1% loss in peak detection accuracy, respectively.Comment: Accepted for publication at the Design Automation Conference 2019 (DAC'19), Las Vegas, Nevada, US

    Graduate Catalog, 1986-1987

    Get PDF
    https://scholar.valpo.edu/gradcatalogs/1014/thumbnail.jp

    Toward a Systematic Evidence-Base for Science in Out-of-School Time: The Role of Assessment

    Get PDF
    Analyzes the tools used in assessments of afterschool and summer science programs, explores the need for comprehensive tools for comparisons across programs, and discusses the most effective structure and format for such a tool. Includes recommendations
    • …
    corecore