47,679 research outputs found

    PQM: A Point Quality Evaluation Metric for Dense Maps

    Full text link
    LiDAR-based mapping/reconstruction are important for various applications, but evaluating the quality of the dense maps they produce is challenging. The current methods have limitations, including the inability to capture completeness, structural information, and local variations in error. In this paper, we propose a novel point quality evaluation metric (PQM) that consists of four sub-metrics to provide a more comprehensive evaluation of point cloud quality. The completeness sub-metric evaluates the proportion of missing data, the artifact score sub-metric recognizes and characterizes artifacts, the accuracy sub-metric measures registration accuracy, and the resolution sub-metric quantifies point cloud density. Through an ablation study using a prototype dataset, we demonstrate the effectiveness of each of the sub-metrics and compare them to popular point cloud distance measures. Using three LiDAR SLAM systems to generate maps, we evaluate their output map quality and demonstrate the metrics robustness to noise and artifacts. Our implementation of PQM, datasets and detailed documentation on how to integrate with your custom dense mapping pipeline can be found at github.com/droneslab/pq

    Robustness of 3D Deep Learning in an Adversarial Setting

    Full text link
    Understanding the spatial arrangement and nature of real-world objects is of paramount importance to many complex engineering tasks, including autonomous navigation. Deep learning has revolutionized state-of-the-art performance for tasks in 3D environments; however, relatively little is known about the robustness of these approaches in an adversarial setting. The lack of comprehensive analysis makes it difficult to justify deployment of 3D deep learning models in real-world, safety-critical applications. In this work, we develop an algorithm for analysis of pointwise robustness of neural networks that operate on 3D data. We show that current approaches presented for understanding the resilience of state-of-the-art models vastly overestimate their robustness. We then use our algorithm to evaluate an array of state-of-the-art models in order to demonstrate their vulnerability to occlusion attacks. We show that, in the worst case, these networks can be reduced to 0% classification accuracy after the occlusion of at most 6.5% of the occupied input space.Comment: 10 pages, 8 figures, 1 tabl
    • …
    corecore