3 research outputs found

    Evaluating Network Processing Efficiency with Processor Partitioning and Asynchronous I/O

    No full text
    Applications requiring high-speed TCP/IP processing can easily saturate a modern server. We and others have previously suggested alleviating this problem in multiprocessor environments by dedicating a subset of the processors to perform network packet processing. The remaining processors perform only application computation, thus eliminating contention between these functions for processor resources. Applications interact with packet processing engines (PPEs) using an asynchronous I/O (AIO) programming interface which bypasses the operating system. A key attraction of this overall approach is that it exploits the architectural trend toward greater thread-level parallelism in future systems based on multi-core processors. In this paper, we conduct a detailed experimental performance analysi

    Evaluating Network Processing Efficiency with Processor Partitioning and Asynchronous I/O

    No full text
    Applications requiring high-speed TCP/IP processing can easily saturate a modern server. We and others have previously suggested alleviating this problem in multiprocessor environments by dedicating a subset of the processors to perform network packet processing. The remaining processors perform only application computation, thus eliminating contention between these functions for processor resources. Applications interact with packet processing engines (PPEs) using an asynchronous I/O (AIO) programming interface which bypasses the operating system. A key attraction of this overall approach is that it exploits the architectural trend toward greater thread-level parallelism in future systems based on multi-core processors. In this paper, we conduct a detailed experimental performance analysis comparing this approach to a best-practice configured Linux baseline system
    corecore