40,496 research outputs found

    Evaluation of recommender systems in streaming environments

    Full text link
    Evaluation of recommender systems is typically done with finite datasets. This means that conventional evaluation methodologies are only applicable in offline experiments, where data and models are stationary. However, in real world systems, user feedback is continuously generated, at unpredictable rates. Given this setting, one important issue is how to evaluate algorithms in such a streaming data environment. In this paper we propose a prequential evaluation protocol for recommender systems, suitable for streaming data environments, but also applicable in stationary settings. Using this protocol we are able to monitor the evolution of algorithms' accuracy over time. Furthermore, we are able to perform reliable comparative assessments of algorithms by computing significance tests over a sliding window. We argue that besides being suitable for streaming data, prequential evaluation allows the detection of phenomena that would otherwise remain unnoticed in the evaluation of both offline and online recommender systems.Comment: Workshop on 'Recommender Systems Evaluation: Dimensions and Design' (REDD 2014), held in conjunction with RecSys 2014. October 10, 2014, Silicon Valley, United State

    Reservoir of Diverse Adaptive Learners and Stacking Fast Hoeffding Drift Detection Methods for Evolving Data Streams

    Full text link
    The last decade has seen a surge of interest in adaptive learning algorithms for data stream classification, with applications ranging from predicting ozone level peaks, learning stock market indicators, to detecting computer security violations. In addition, a number of methods have been developed to detect concept drifts in these streams. Consider a scenario where we have a number of classifiers with diverse learning styles and different drift detectors. Intuitively, the current 'best' (classifier, detector) pair is application dependent and may change as a result of the stream evolution. Our research builds on this observation. We introduce the \mbox{Tornado} framework that implements a reservoir of diverse classifiers, together with a variety of drift detection algorithms. In our framework, all (classifier, detector) pairs proceed, in parallel, to construct models against the evolving data streams. At any point in time, we select the pair which currently yields the best performance. We further incorporate two novel stacking-based drift detection methods, namely the \mbox{FHDDMS} and \mbox{FHDDMS}_{add} approaches. The experimental evaluation confirms that the current 'best' (classifier, detector) pair is not only heavily dependent on the characteristics of the stream, but also that this selection evolves as the stream flows. Further, our \mbox{FHDDMS} variants detect concept drifts accurately in a timely fashion while outperforming the state-of-the-art.Comment: 42 pages, and 14 figure

    Evaluation methods and decision theory for classification of streaming data with temporal dependence

    Get PDF
    Predictive modeling on data streams plays an important role in modern data analysis, where data arrives continuously and needs to be mined in real time. In the stream setting the data distribution is often evolving over time, and models that update themselves during operation are becoming the state-of-the-art. This paper formalizes a learning and evaluation scheme of such predictive models. We theoretically analyze evaluation of classifiers on streaming data with temporal dependence. Our findings suggest that the commonly accepted data stream classification measures, such as classification accuracy and Kappa statistic, fail to diagnose cases of poor performance when temporal dependence is present, therefore they should not be used as sole performance indicators. Moreover, classification accuracy can be misleading if used as a proxy for evaluating change detectors with datasets that have temporal dependence. We formulate the decision theory for streaming data classification with temporal dependence and develop a new evaluation methodology for data stream classification that takes temporal dependence into account. We propose a combined measure for classification performance, that takes into account temporal dependence, and we recommend using it as the main performance measure in classification of streaming data
    corecore