5,147 research outputs found

    Evaluating a peer-to-peer storage system in presence of malicious peers

    Full text link
    International audienceWe present a peer-to-peer based storage system and evaluate its resistance in the presence of malicious peers. To do so, we resort to simulation of the actual code borrowed from the production system. Our analysis allows to identify the main threats, prioritise them and propose directions for mitigating the attacks

    The Reputation, Opinion, Credibility and Quality (ROCQ) Scheme

    Get PDF
    An implicit assumption of trust in the participants is at the basis of most Peer-to-Peer (P2P) networks. However, in practice, not all participants are benign or cooperative. Identifying such peers is critical to the smooth and effective functioning of a P2P network. In this paper, we present the ROCQ mechanism, a reputation-based trust management system that computes the trustworthiness of peers on the basis of transaction-based feedback. The ROCQ model combines four parameters: Reputation (R) or a peer's global trust rating, Opinion (O) formed by a peer's first-hand interactions, Credibility (C) of a reporting peer and Quality (Q) or the confidence a reporting peer puts on the judgement it provides. We then present a distributed implementation of our scheme over FreePastry, a structured P2P network. Experimental results considering different models for malicious behavior indicate the contexts in which the ROCQ scheme performs better than existing schemes

    Systematizing Decentralization and Privacy: Lessons from 15 Years of Research and Deployments

    Get PDF
    Decentralized systems are a subset of distributed systems where multiple authorities control different components and no authority is fully trusted by all. This implies that any component in a decentralized system is potentially adversarial. We revise fifteen years of research on decentralization and privacy, and provide an overview of key systems, as well as key insights for designers of future systems. We show that decentralized designs can enhance privacy, integrity, and availability but also require careful trade-offs in terms of system complexity, properties provided, and degree of decentralization. These trade-offs need to be understood and navigated by designers. We argue that a combination of insights from cryptography, distributed systems, and mechanism design, aligned with the development of adequate incentives, are necessary to build scalable and successful privacy-preserving decentralized systems

    Detection and mitigation of the eclipse attack in chord overlays

    Get PDF
    Distributed hash table-based overlays are widely used to support efficient information routing and storage in structured peer-to-peer networks, but they are also subject to numerous attacks aimed at disrupting their correct functioning. In this paper, we analyse the impact of the eclipse attack on a chord-based overlay in terms of number of key lookups intercepted by a collusion of malicious nodes. We propose a detection algorithm for the individuation of ongoing attacks to the chord overlay, relying on features that can be independently estimated by each network peer, which are given as input to a C4.5-based binary classifier. Moreover, we propose some modifications to the chord routing protocol in order to mitigate the effects of such attacks. The countermeasures introduce a limited traffic overhead and can operate either in a distributed fashion or assuming the presence of a centralised trusted entity. Numerical results show the effectiveness of the proposed mitigation techniques
    • …
    corecore