2 research outputs found

    IAVS: Intelligent Active Network Vulnerability Scanner

    Get PDF
    Network security needs to be assured through runtime active evaluating and assessment. However, active vulnerability scanners suffer from serious deficiencies such as heavy scan traffic during the reconnaissance phase, uncertainty in the environment, and heavy reliance on experts. Generating a blind heavy load of attack packets not only causes usage of network resources, but it also increases the probability of detection by target defense systems and causes failure in finding vulnerabilities. Furthermore, environmental uncertainty increases pointless attempts of vulnerability scanners, which wastes time. Utilizing a decision-making method devised for uncertainty conditions, we present Intelligent Active Network Vulnerability Scanner (IAVS). IAVS is implemented as an extension on Hail Mary, the automatic execution mechanism in the Metasploit toolkit. IAVS learns from previous vulnerability exploitation attempts to select exploit codes purposefully. IAVS not only reduces the role of experts in the process of vulnerability testing, but it also decreases the volume of scanning requests during the reconnaissance phase by integrating the reconnaissance and exploitation phases. Our experimental results indicate a successful decrease in failed attempts. It is also demonstrated that improvements in the results of IAVS correspond directly to the rate of similarity among different vulnerabilities in systems of the target network; that is, the higher the similarity, the better the results of IAVS. Our experiments compared the results of IAVS and those of Hail Mary without the IAVS extension; these results show that IAVS improved Hail Marys successful attempts by around 37%.

    AVOIDIT IRS: An Issue Resolution System To Resolve Cyber Attacks

    Get PDF
    Cyber attacks have greatly increased over the years and the attackers have progressively improved in devising attacks against specific targets. Cyber attacks are considered a malicious activity launched against networks to gain unauthorized access causing modification, destruction, or even deletion of data. This dissertation highlights the need to assist defenders with identifying and defending against cyber attacks. In this dissertation an attack issue resolution system is developed called AVOIDIT IRS (AIRS). AVOIDIT IRS is based on the attack taxonomy AVOIDIT (Attack Vector, Operational Impact, Defense, Information Impact, and Target). Attacks are collected by AIRS and classified into their respective category using AVOIDIT.Accordingly, an organizational cyber attack ontology was developed using feedback from security professionals to improve the communication and reusability amongst cyber security stakeholders. AIRS is developed as a semi-autonomous application that extracts unstructured external and internal attack data to classify attacks in sequential form. In doing so, we designed and implemented a frequent pattern and sequential classification algorithm associated with the five classifications in AVOIDIT. The issue resolution approach uses inference to educate the defender on the plausible cyber attacks. The AIRS can work in conjunction with an intrusion detection system (IDS) to provide a heuristic to cyber security breaches within an organization. AVOIDIT provides a framework for classifying appropriate attack information, which is fundamental in devising defense strategies against such cyber attacks. The AIRS is further used as a knowledge base in a game inspired defense architecture to promote game model selection upon attack identification. Future work will incorporate honeypot attack information to improve attack identification, classification, and defense propagation.In this dissertation, 1,025 common vulnerabilities and exposures (CVEs) and over 5,000 lines of log files instances were captured in the AIRS for analysis. Security experts were consulted to create rules to extract pertinent information and algorithms to correlate identified data for notification. The AIRS was developed using the Codeigniter [74] framework to provide a seamless visualization tool for data mining regarding potential cyber attacks relative to web applications. Testing of the AVOIDIT IRS revealed a recall of 88%, precision of 93%, and a 66% correlation metric
    corecore