11 research outputs found

    Evaluation of low-power architectures in a scientific computing environment

    Get PDF
    HPC (High Performance Computing) represents, together with theory and experiments, the third pillar of science. Through HPC, scientists can simulate phenomena otherwise impossible to study. The need of performing larger and more accurate simulations requires to HPC to improve every day. HPC is constantly looking for new computational platforms that can improve cost and power efficiency. The Mont-Blanc project is a EU funded research project that targets to study new hardware and software solutions that can improve efficiency of HPC systems. The vision of the project is to leverage the fast growing market of mobile devices to develop the next generation supercomputers. In this work we contribute to the objectives of the Mont-Blanc project by evaluating performance of production scientific applications on innovative low power architectures. In order to do so, we describe our experiences porting and evaluating sate of the art scientific applications on the Mont-Blanc prototype, the first HPC system built with commodity low power embedded technology. We then extend our study to compare off-the-shelves ARMv8 platforms. We finally discuss the most impacting issues encountered during the development of the Mont-Blanc prototype system

    Advances in ILP-based Modulo Scheduling for High-Level Synthesis

    Get PDF
    In today's heterogenous computing world, field-programmable gate arrays (FPGA) represent the energy-efficient alternative to generic processor cores and graphics accelerators. However, due to their radically different computing model, automatic design methods, such as high-level synthesis (HLS), are needed to harness their full power. HLS raises the abstraction level to behavioural descriptions of algorithms, thus freeing designers from dealing with tedious low-level concerns, and enabling a rapid exploration of different microarchitectures for the same input specification. In an HLS tool, scheduling is the most influential step for the performance of the generated accelerator. Specifically, modulo schedulers enable a pipelined execution, which is a key technique to speed up the computation by extracting more parallelism from the input description. In this thesis, we make a case for the use of integer linear programming (ILP) as a framework for modulo scheduling approaches. First, we argue that ILP-based modulo schedulers are practically usable in the HLS context. Secondly, we show that the ILP framework enables a novel approach for the automatic design of FPGA accelerators. We substantiate the first claim by proposing a new, flexible ILP formulation for the modulo scheduling problem, and evaluate it experimentally with a diverse set of realistic test instances. While solving an ILP may incur an exponential runtime in the worst case, we observe that simple countermeasures, such as setting a time limit, help to contain the practical impact of outlier instances. Furthermore, we present an algorithm to compress problems before the actual scheduling. An HLS-generated microarchitecture is comprised of operators, i.e. single-purpose functional units such as a floating-point multiplier. Usually, the allocation of operators is determined before scheduling, even though both problems are interdependent. To that end, we investigate an extension of the modulo scheduling problem that combines both concerns in a single model. Based on the extension, we present a novel multi-loop scheduling approach capable of finding the fastest microarchitecture that still fits on a given FPGA device - an optimisation problem that current commercial HLS tools cannot solve. This proves our second claim

    Energy Efficiency Models for Scientific Applications on Supercomputers

    Get PDF

    Productive Programming Systems for Heterogeneous Supercomputers

    Get PDF
    The majority of today's scientific and data analytics workloads are still run on relatively energy inefficient, heavyweight, general-purpose processing cores, often referred to in the literature as latency-oriented architectures. The flexibility of these architectures and the programmer aids included (e.g. large and deep cache hierarchies, branch prediction logic, pre-fetch logic) makes them flexible enough to run a wide range of applications fast. However, we have started to see growth in the use of lightweight, simpler, energy-efficient, and functionally constrained cores. These architectures are commonly referred to as throughput-oriented. Within each shared memory node, the computational backbone of future throughput-oriented HPC machines will consist of large pools of lightweight cores. The first wave of throughput-oriented computing came in the mid 2000's with the use of GPUs for general-purpose and scientific computing. Today we are entering the second wave of throughput-oriented computing, with the introduction of NVIDIA Pascal GPUs, Intel Knights Landing Xeon Phi processors, the Epiphany Co-Processor, the Sunway MPP, and other throughput-oriented architectures that enable pre-exascale computing. However, while the majority of the FLOPS in designs for future HPC systems come from throughput-oriented architectures, they are still commonly paired with latency-oriented cores which handle management functions and lightweight/un-parallelizable computational kernels. Hence, most future HPC machines will be heterogeneous in their processing cores. However, the heterogeneity of future machines will not be limited to the processing elements. Indeed, heterogeneity will also exist in the storage, networking, memory, and software stacks of future supercomputers. As a result, it will be necessary to combine many different programming models and libraries in a single application. How to do so in a programmable and well-performing manner is an open research question. This thesis addresses this question using two approaches. First, we explore using managed runtimes on HPC platforms. As a result of their high-level programming models, these managed runtimes have a long history of supporting data analytics workloads on commodity hardware, but often come with overheads which make them less common in the HPC domain. Managed runtimes are also not supported natively on throughput-oriented architectures. Second, we explore the use of a modular programming model and work-stealing runtime to compose the programming and scheduling of multiple third-party HPC libraries. This approach leverages existing investment in HPC libraries, unifies the scheduling of work on a platform, and is designed to quickly support new programming model and runtime extensions. In support of these two approaches, this thesis also makes novel contributions in tooling for future supercomputers. We demonstrate the value of checkpoints as a software development tool on current and future HPC machines, and present novel techniques in performance prediction across heterogeneous cores

    ACiS: smart switches with application-level acceleration

    Full text link
    Network performance has contributed fundamentally to the growth of supercomputing over the past decades. In parallel, High Performance Computing (HPC) peak performance has depended, first, on ever faster/denser CPUs, and then, just on increasing density alone. As operating frequency, and now feature size, have levelled off, two new approaches are becoming central to achieving higher net performance: configurability and integration. Configurability enables hardware to map to the application, as well as vice versa. Integration enables system components that have generally been single function-e.g., a network to transport data—to have additional functionality, e.g., also to operate on that data. More generally, integration enables compute-everywhere: not just in CPU and accelerator, but also in network and, more specifically, the communication switches. In this thesis, we propose four novel methods of enhancing HPC performance through Advanced Computing in the Switch (ACiS). More specifically, we propose various flexible and application-aware accelerators that can be embedded into or attached to existing communication switches to improve the performance and scalability of HPC and Machine Learning (ML) applications. We follow a modular design discipline through introducing composable plugins to successively add ACiS capabilities. In the first work, we propose an inline accelerator to communication switches for user-definable collective operations. MPI collective operations can often be performance killers in HPC applications; we seek to solve this bottleneck by offloading them to reconfigurable hardware within the switch itself. We also introduce a novel mechanism that enables the hardware to support MPI communicators of arbitrary shape and that is scalable to very large systems. In the second work, we propose a look-aside accelerator for communication switches that is capable of processing packets at line-rate. Functions requiring loops and states are addressed in this method. The proposed in-switch accelerator is based on a RISC-V compatible Coarse Grained Reconfigurable Arrays (CGRAs). To facilitate usability, we have developed a framework to compile user-provided C/C++ codes to appropriate back-end instructions for configuring the accelerator. In the third work, we extend ACiS to support fused collectives and the combining of collectives with map operations. We observe that there is an opportunity of fusing communication (collectives) with computation. Since the computation can vary for different applications, ACiS support should be programmable in this method. In the fourth work, we propose that switches with ACiS support can control and manage the execution of applications, i.e., that the switch be an active device with decision-making capabilities. Switches have a central view of the network; they can collect telemetry information and monitor application behavior and then use this information for control, decision-making, and coordination of nodes. We evaluate the feasibility of ACiS through extensive RTL-based simulation as well as deployment in an open-access cloud infrastructure. Using this simulation framework, when considering a Graph Convolutional Network (GCN) application as a case study, a speedup of on average 3.4x across five real-world datasets is achieved on 24 nodes compared to a CPU cluster without ACiS capabilities

    Software for Exascale Computing - SPPEXA 2016-2019

    Get PDF
    This open access book summarizes the research done and results obtained in the second funding phase of the Priority Program 1648 "Software for Exascale Computing" (SPPEXA) of the German Research Foundation (DFG) presented at the SPPEXA Symposium in Dresden during October 21-23, 2019. In that respect, it both represents a continuation of Vol. 113 in Springer’s series Lecture Notes in Computational Science and Engineering, the corresponding report of SPPEXA’s first funding phase, and provides an overview of SPPEXA’s contributions towards exascale computing in today's sumpercomputer technology. The individual chapters address one or more of the research directions (1) computational algorithms, (2) system software, (3) application software, (4) data management and exploration, (5) programming, and (6) software tools. The book has an interdisciplinary appeal: scholars from computational sub-fields in computer science, mathematics, physics, or engineering will find it of particular interest

    Towards scalable adaptive mesh refinement on future parallel architectures

    Get PDF
    In the march towards exascale, supercomputer architectures are undergoing a significant change. Limited by power consumption and heat dissipation, future supercomputers are likely to be built around a lower-power many-core model. This shift in supercomputer design will require sweeping code changes in order to take advantage of the highly-parallel architectures. Evolving or rewriting legacy applications to perform well on these machines is a significant challenge. Mini-applications, small computer programs that represent the performance characteristics of some larger application, can be used to investigate new programming models and improve the performance of the legacy application by proxy. These applications, being both easy to modify and representative, are essential for establishing a path to move legacy applications into the exascale era. The focus of the work presented in this thesis is the design, development and employment of a new mini-application, CleverLeaf, for shock hydro- dynamics with block-structured adaptive mesh refinement (AMR). We report on the development of CleverLeaf, and show how the fresh start provided by a mini-application can be used to develop an application that is flexible, accurate, and easy to employ in the investigation of exascale architectures. We also detail the development of the first reported resident parallel block-structured AMR library for Graphics Processing Units (GPUs). Extending the SAMRAI library using the CUDA programming model, we develop datatypes that store data only in GPU memory, as well the necessary operators for moving and interpolating data on an adaptive mesh. We show that executing AMR simulations on a GPU is up to 4.8⇥ faster than a CPU, and demonstrate scalability on over 4,000 nodes using a combination of CUDA and MPI. Finally, we show how mini-applications can be employed to improve the performance of production applications on existing parallel architectures by selecting the optimal application configuration. Using CleverLeaf, we identify the most appropriate configurations on three contemporary supercomputer architectures. Selecting the best parameters for our application can reduce run-time by up to 82% and reduce memory usage by up to 32%
    corecore