8 research outputs found

    Explanation of Siamese Neural Networks for Weakly Supervised Learning

    Get PDF
    A new method for explaining the Siamese neural network (SNN) as a black-box model for weakly supervised learning is proposed under condition that the output of every subnetwork of the SNN is a vector which is accessible. The main problem of the explanation is that the perturbation technique cannot be used directly for input instances because only their semantic similarity or dissimilarity is known. Moreover, there is no an "inverse" map between the SNN output vector and the corresponding input instance. Therefore, a special autoencoder is proposed, which takes into account the proximity of its hidden representation and the SNN outputs. Its pre-trained decoder part as well as the encoder are used to reconstruct original instances from the SNN perturbed output vectors. The important features of the explained instances are determined by averaging the corresponding changes of the reconstructed instances. Numerical experiments with synthetic data and with the well-known dataset MNIST illustrate the proposed method

    Evaluating Explainers via Perturbation

    Get PDF
    Due to high complexity of many modern machine learning models such as deep convolutional networks, understanding the cause of model’s prediction is critical. Many explainers have been designed to give us more insights on the decision of complex classifiers. However, there is no common ground on evaluating the quality of different classification methods. Motivated by the needs for comprehensive evaluation, we introduce the c-Eval metric and the corresponding framework to quantify the explainer’s quality on feature-based explainers of machine learning image classifiers. Given a prediction and the corresponding explanation on that prediction, c-Eval is the minimum-power perturbation that successfully alters the prediction while keeping the explanation’s features unchanged. We also provide theoretical analysis linking the proposed parameter with the portion of predicted ob- ject covered by the explanation. Using a heuristic approach, we introduce the c-Eval plot, which not only displays a strong connection between c-Eval and explainers’ quality, but also serves as a low-complexity approach of assessing explainers. We finally conduct extensive experiments of explainers on three different datasets in order to support the adoption of c-Eval in evaluating explainers’ performance
    corecore