15,371 research outputs found
Poisson integrators
An overview of Hamiltonian systems with noncanonical Poisson structures is
given. Examples of bi-Hamiltonian ode's, pde's and lattice equations are
presented. Numerical integrators using generating functions, Hamiltonian
splitting, symplectic Runge-Kutta methods are discussed for Lie-Poisson systems
and Hamiltonian systems with a general Poisson structure. Nambu-Poisson systems
and the discrete gradient methods are also presented.Comment: 30 page
Explicit Lie-Poisson integration and the Euler equations
We give a wide class of Lie-Poisson systems for which explicit, Lie-Poisson
integrators, preserving all Casimirs, can be constructed. The integrators are
extremely simple. Examples are the rigid body, a moment truncation, and a new,
fast algorithm for the sine-bracket truncation of the 2D Euler equations.Comment: 7 pages, compile with AMSTEX; 2 figures available from autho
Computations in formal symplectic geometry and characteristic classes of moduli spaces
We make explicit computations in the formal symplectic geometry of Kontsevich
and determine the Euler characteristics of the three cases, namely commutative,
Lie and associative ones, up to certain weights.From these, we obtain some
non-triviality results in each case. In particular, we determine the integral
Euler characteristics of the outer automorphism groups Out F_n of free groups
for all n <= 10 and prove the existence of plenty of rational cohomology
classes of odd degrees. We also clarify the relationship of the commutative
graph homology with finite type invariants of homology 3-spheres as well as the
leaf cohomology classes for transversely symplectic foliations. Furthermore we
prove the existence of several new non-trivalent graph homology classes of odd
degrees. Based on these computations, we propose a few conjectures and problems
on the graph homology and the characteristic classes of the moduli spaces of
graphs as well as curves.Comment: 33 pages, final version, to appear in Quantum Topolog
- …
