5,814 research outputs found
A creature with a hundred waggly tails: intrinsically disordered proteins in the ribosome
This article is made available for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.Intrinsic disorder (i.e., lack of a unique 3-D structure) is a common phenomenon, and many biologically active proteins are disordered as a whole, or contain long disordered regions. These intrinsically disordered proteins/regions constitute a significant part of all proteomes, and their functional repertoire is complementary to functions of ordered proteins. In fact, intrinsic disorder represents an important driving force for many specific functions. An illustrative example of such disorder-centric functional class is RNA-binding proteins. In this study, we present the results of comprehensive bioinformatics analyses of the abundance and roles of intrinsic disorder in 3,411 ribosomal proteins from 32 species. We show that many ribosomal proteins are intrinsically disordered or hybrid proteins that contain ordered and disordered domains. Predicted globular domains of many ribosomal proteins contain noticeable regions of intrinsic disorder. We also show that disorder in ribosomal proteins has different characteristics compared to other proteins that interact with RNA and DNA including overall abundance, evolutionary conservation, and involvement in protein–protein interactions. Furthermore, intrinsic disorder is not only abundant in the ribosomal proteins, but we demonstrate that it is absolutely necessary for their various functions
Finite Dimension: A Mathematical Tool to Analise Glycans
There is a need to develop widely applicable tools to understand glycan organization, diversity and structure. We present a graph-theoretical study of a large sample of glycans in terms of finite dimension, a new metric which is an adaptation to finite sets of the classical Hausdorff "fractal" dimension. Every glycan in the sample is encoded, via finite dimension, as a point of Glycan Space, a new notion introduced in this paper. Two major outcomes were found: (a) the existence of universal bounds that restrict the universe of possible glycans and show, for instance, that the graphs of glycans are a very special type of chemical graph, and (b) how Glycan Space is related to biological domains associated to the analysed glycans. In addition, we discuss briefly how this encoding may help to improve search in glycan databases.Fil: Alonso, Juan Manuel. Universidad Nacional de Cuyo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; ArgentinaFil: Arroyuelo, Agustina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; ArgentinaFil: Garay, Pablo Germán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; ArgentinaFil: Martín, Osvaldo Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; ArgentinaFil: Vila, Jorge Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentin
The effects of arbuscular mycorrhizal fungi (AMF) and Rhizophagus irregularis on soil microorganisms assessed by metatranscriptomics and metaproteomics
Arbuscular mycorrhizal fungi (AMF) form symbioses with approximately 80% of plant species and potentially benefit their hosts (e.g. nutrient acquisition) and the soil environment (e.g. soil aggregation). AMF also affect soil microbiota and soil multifunctionality. We manipulated AMF presence (via inoculation of non-sterile soil with Rhizophagus irregularis and using a hyphal compartment design) and used RNA-seq and metaproteomics to assess AMF roles in soil. The results indicated that AMF drove an active soil microbial community expressing transcripts and proteins related to nine metabolic functions, including the metabolism of C and N. We suggest two possible mechanisms: 1) the AMF hyphae produce exudates that select a beneficial community, or, 2) the hyphae compete with other soil microbes for available nutrients and consequently induce the community to mineralize nutrients from soil organic matter. We also identified candidate proteins that are potentially related to soil aggregation, such as Lpt and HSP60. Our results bridge microbial ecology and ecosystem functioning. We show that the AMF hyphosphere contains an active community related to soil respiration and nutrient cycling, thus potentially improving nutrient mineralization from soil organic matter and nutrient supply to the plants
3 tera-basepairs as a fundamental limit for robust DNA replication
10 p.-2 tab.In order to maintain functional robustness and species integrity, organisms must ensure high fidelity of the genome duplication process. This is particularly true during early development, where cell division is often occurring both rapidly and coherently. By studying the extreme limits of suppressing DNA replication failure due to double fork stall errors, we uncover a fundamental constant that describes a trade-off between genome size and architectural complexity of the developing organism. This constant has the approximate value N_U ≈ 3×10^12 basepairs, and depends only on two highly conserved molecular properties of DNA biology. We show that our theory is successful in interpreting a diverse range of data across the Eukaryota.MAM, LA and TJN acknowledge prior support from the Scottish Universities Life Sciences Alliance. JJB acknowledges support from Cancer Research UK (grant C303/A14301) and the Wellcome Trust (grant WT096598MA). TJN acknowledges prior support from the National Institutes of Health (Physical Sciences in Oncology Centers, U54 CA143682).Peer reviewe
Kinetic control of eukaryotic chromatin structure by recursive topological restraints
Chromatin structure undergoes many changes during the cell cycle and in response to regulatory events. A basic unit of chromatin organization is the nucleosome core particle. However, very little is known about how nucleosomes are arranged into higher-order structures in vivo, even though the efficiency and precision of cell division imply high levels of structural organization. We propose abandoning the current paradigm of chromatin organization based on thermodynamics of the lowest energy state and replace it with the idea of a topologically restrained, high-energy structure. We propose that DNA is subject to a recursive topological restraint, and is anchored by hemicatenates that are part of the chromosomal scaffold. Long-distance _cis_-regulation of transcription is a natural consequence of recursive topological restraint. This new theory of chromatin structure has a multitude of consequences for key aspects of cellular biology
- …