6,364 research outputs found

    Component-wise modeling of articulated objects

    Get PDF
    We introduce a novel framework for modeling articulated objects based on the aspects of their components. By decomposing the object into components, we divide the problem in smaller modeling tasks. After obtaining 3D models for each component aspect by employing a shape deformation paradigm, we merge them together, forming the object components. The final model is obtained by assembling the components using an optimization scheme which fits the respective 3D models to the corresponding apparent contours in a reference pose. The results suggest that our approach can produce realistic 3D models of articulated objects in reasonable time

    Fitting a 3D Morphable Model to Edges: A Comparison Between Hard and Soft Correspondences

    Get PDF
    We propose a fully automatic method for fitting a 3D morphable model to single face images in arbitrary pose and lighting. Our approach relies on geometric features (edges and landmarks) and, inspired by the iterated closest point algorithm, is based on computing hard correspondences between model vertices and edge pixels. We demonstrate that this is superior to previous work that uses soft correspondences to form an edge-derived cost surface that is minimised by nonlinear optimisation.Comment: To appear in ACCV 2016 Workshop on Facial Informatic

    Spectral representation of lattice gluon and ghost propagators at zero temperature

    Get PDF
    We consider the analytic continuation of Euclidean propagator data obtained from 4D simulations to Minkowski space. In order to perform this continuation, the common approach is to first extract the K\"all\'en-Lehmann spectral density of the field. Once this is known, it can be extended to Minkowski space to yield the Minkowski propagator. However, obtaining the K\"all\'en-Lehmann spectral density from propagator data is a well known ill-posed numerical problem. To regularize this problem we implement an appropriate version of Tikhonov regularization supplemented with the Morozov discrepancy principle. We will then apply this to various toy model data to demonstrate the conditions of validity for this method, and finally to zero temperature gluon and ghost lattice QCD data. We carefully explain how to deal with the IR singularity of the massless ghost propagator. We also uncover the numerically different performance when using two ---mathematically equivalent--- versions of the K\"all\'en-Lehmann spectral integral.Comment: 33 pages, 18 figure

    Adaptive optics imaging of P Cygni in Halpha

    Full text link
    We obtained Halpha diffraction limited data of the LBV star P Cyg using the ONERA Adaptive Optics (AO) facility BOA at the OHP 1.52m telescope on October 1997. Taking P Cyg and the reference star 59 Cyg AO long exposures we find that P Cyg clearly exhibits a large and diffuse intensity distribution compared to the 59 Cyg's point-like source. A deconvolution of P Cyg using 59 Cyg as the Point Spread Function was performed by means of the Richardson-Lucy algorithm. P Cyg clearly appears as an unresolved star surrounded by a clumped envelope. The reconstructed image of P Cyg is compared to similar spatial resolution maps obtained from radio aperture synthesis imaging. We put independent constraints on the physics of P Cyg which agree well with radio results. We discuss future possibilities to constrain the wind structure of P Cyg by using multi-resolution imaging, coronagraphy and long baseline interferometry to trace back its evolutionary status.Comment: 10 pages, 19 Encapsulated Postscript figure

    Clocks and Rods in Jackiw-Teitelboim Quantum Gravity

    Get PDF
    We specify bulk coordinates in Jackiw-Teitelboim (JT) gravity using a boundary-intrinsic radar definition. This allows us to study and calculate exactly diff-invariant bulk correlation functions of matter-coupled JT gravity, which are found to satisfy microcausality. We observe that quantum gravity effects dominate near-horizon matter correlation functions. This shows that quantum matter in classical curved spacetime is not a sensible model for near-horizon matter-coupled JT gravity. This is how JT gravity, given our choice of bulk frame, evades an information paradox. This echoes into the quantum expectation value of the near-horizon metric, whose analysis is extended from the disk model to the recently proposed topological completion of JT gravity. Due to quantum effects, at distances of order the Planck length to the horizon, a dramatic breakdown of Rindler geometry is observed.Comment: 37 pages + appendices, v4: improved discussion on conformal anomaly and choice of bulk observable, added appendix on massive bulk correlators and global conformal blocks, corrected several equations in section 5 and appendix E, typos corrected, matches published versio

    3D Shape Reconstruction from Sketches via Multi-view Convolutional Networks

    Full text link
    We propose a method for reconstructing 3D shapes from 2D sketches in the form of line drawings. Our method takes as input a single sketch, or multiple sketches, and outputs a dense point cloud representing a 3D reconstruction of the input sketch(es). The point cloud is then converted into a polygon mesh. At the heart of our method lies a deep, encoder-decoder network. The encoder converts the sketch into a compact representation encoding shape information. The decoder converts this representation into depth and normal maps capturing the underlying surface from several output viewpoints. The multi-view maps are then consolidated into a 3D point cloud by solving an optimization problem that fuses depth and normals across all viewpoints. Based on our experiments, compared to other methods, such as volumetric networks, our architecture offers several advantages, including more faithful reconstruction, higher output surface resolution, better preservation of topology and shape structure.Comment: 3DV 2017 (oral

    Modave lectures on bulk reconstruction in AdS/CFT

    Full text link
    These lecture notes are based on a series of lectures given at the XIII Modave summer school in mathematical physics. We review the construction due to Hamilton, Kabat, Lifschytz and Lowe for reconstructing local bulk operators from CFT operators in the context of AdS/CFT and show how to recover bulk correlation functions from this definition. Building on the work of these authors, it has been noted that the bulk displays quantum error correcting properties. We will discuss tensor network toy models to exemplify these remarkable features. We will discuss the role of gauge invariance and of diffeomorphism symmetry in the reconstruction of bulk operators. Lastly, we provide another method of bulk reconstruction specified to AdS3_3/CFT2_2 in which bulk operators create cross-cap states in the CFT.Comment: 35 pages, 8 figures, lecture notes, v4: a few minor improvements upon the published proceedings version (version 3 of these lecture notes in arXiv) have been implemente
    • …
    corecore