348,013 research outputs found

    Ethics of Artificial Intelligence

    Get PDF
    Artificial intelligence (AI) is a digital technology that will be of major importance for the development of humanity in the near future. AI has raised fundamental questions about what we should do with such systems, what the systems themselves should do, what risks they involve and how we can control these. - After the background to the field (1), this article introduces the main debates (2), first on ethical issues that arise with AI systems as objects, i.e. tools made and used by humans; here, the main sections are privacy (2.1), manipulation (2.2), opacity (2.3), bias (2.4), autonomy & responsibility (2.6) and the singularity (2.7). Then we look at AI systems as subjects, i.e. when ethics is for the AI systems themselves in machine ethics (2.8.) and artificial moral agency (2.9). Finally we look at future developments and the concept of AI (3). For each section within these themes, we provide a general explanation of the ethical issues, we outline existing positions and arguments, then we analyse how this plays out with current technologies and finally what policy conse-quences may be drawn

    Ethically Aligned Design: An empirical evaluation of the RESOLVEDD-strategy in Software and Systems development context

    Full text link
    Use of artificial intelligence (AI) in human contexts calls for ethical considerations for the design and development of AI-based systems. However, little knowledge currently exists on how to provide useful and tangible tools that could help software developers and designers implement ethical considerations into practice. In this paper, we empirically evaluate a method that enables ethically aligned design in a decision-making process. Though this method, titled the RESOLVEDD-strategy, originates from the field of business ethics, it is being applied in other fields as well. We tested the RESOLVEDD-strategy in a multiple case study of five student projects where the use of ethical tools was given as one of the design requirements. A key finding from the study indicates that simply the presence of an ethical tool has an effect on ethical consideration, creating more responsibility even in instances where the use of the tool is not intrinsically motivated.Comment: This is the author's version of the work. The copyright holder's version can be found at https://doi.org/10.1109/SEAA.2019.0001

    Building Ethically Bounded AI

    Full text link
    The more AI agents are deployed in scenarios with possibly unexpected situations, the more they need to be flexible, adaptive, and creative in achieving the goal we have given them. Thus, a certain level of freedom to choose the best path to the goal is inherent in making AI robust and flexible enough. At the same time, however, the pervasive deployment of AI in our life, whether AI is autonomous or collaborating with humans, raises several ethical challenges. AI agents should be aware and follow appropriate ethical principles and should thus exhibit properties such as fairness or other virtues. These ethical principles should define the boundaries of AI's freedom and creativity. However, it is still a challenge to understand how to specify and reason with ethical boundaries in AI agents and how to combine them appropriately with subjective preferences and goal specifications. Some initial attempts employ either a data-driven example-based approach for both, or a symbolic rule-based approach for both. We envision a modular approach where any AI technique can be used for any of these essential ingredients in decision making or decision support systems, paired with a contextual approach to define their combination and relative weight. In a world where neither humans nor AI systems work in isolation, but are tightly interconnected, e.g., the Internet of Things, we also envision a compositional approach to building ethically bounded AI, where the ethical properties of each component can be fruitfully exploited to derive those of the overall system. In this paper we define and motivate the notion of ethically-bounded AI, we describe two concrete examples, and we outline some outstanding challenges.Comment: Published at AAAI Blue Sky Track, winner of Blue Sky Awar

    Philosophy and theory of artificial intelligence 2017

    Get PDF
    This book reports on the results of the third edition of the premier conference in the field of philosophy of artificial intelligence, PT-AI 2017, held on November 4 - 5, 2017 at the University of Leeds, UK. It covers: advanced knowledge on key AI concepts, including complexity, computation, creativity, embodiment, representation and superintelligence; cutting-edge ethical issues, such as the AI impact on human dignity and society, responsibilities and rights of machines, as well as AI threats to humanity and AI safety; and cutting-edge developments in techniques to achieve AI, including machine learning, neural networks, dynamical systems. The book also discusses important applications of AI, including big data analytics, expert systems, cognitive architectures, and robotics. It offers a timely, yet very comprehensive snapshot of what is going on in the field of AI, especially at the interfaces between philosophy, cognitive science, ethics and computing

    AI management an exploratory survey of the influence of GDPR and FAT principles

    Get PDF
    As organisations increasingly adopt AI technologies, a number of ethical issues arise. Much research focuses on algorithmic bias, but there are other important concerns arising from the new uses of data and the introduction of technologies which may impact individuals. This paper examines the interplay between AI, Data Protection and FAT (Fairness, Accountability and Transparency) principles. We review the potential impact of the GDPR and consider the importance of the management of AI adoption. A survey of data protection experts is presented, the initial analysis of which provides some early insights into the praxis of AI in operational contexts. The findings indicate that organisations are not fully compliant with the GDPR, and that there is limited understanding of the relevance of FAT principles as AI is introduced. Those organisations which demonstrate greater GDPR compliance are likely to take a more cautious, risk-based approach to the introduction of AI

    Making metaethics work for AI: realism and anti-realism

    Get PDF
    Engineering an artificial intelligence to play an advisory role in morally charged decision making will inevitably introduce meta-ethical positions into the design. Some of these positions, by informing the design and operation of the AI, will introduce risks. This paper offers an analysis of these potential risks along the realism/anti-realism dimension in metaethics and reveals that realism poses greater risks, but, on the other hand, anti-realism undermines the motivation for engineering a moral AI in the first place
    corecore